
AI Automation and Labor Market Outcomes§

Yakup Kutsal Koca*

November 14, 2025

Please click here for the most recent version

Abstract

There are many predictions regarding occupational AI exposure, but existing mea-

sures typically fail to account for worker reallocation and its resulting economic

impacts. Hence, exposure measures do not necessarily translate into economic im-

pact. An exposed worker can mitigate wage losses by switching to the next best

occupation. On the other hand, this switch creates new competition for the in-

cumbent workers in the next-best occupation. To model these reallocation effects

and their impact on equilibrium wages, I build a framework where production can

be performed by human workers or by AI technology. I then estimate a model of

occupation choice where workers are heterogeneous in terms of their comparative

advantage across occupations. Using automation scores, I simulate an AI shock to

occupational prices, and then solve for the equilibrium after the workers reallocate.

Given that AI shock is uneven across occupations, results suggest that generalists,

i.e. workers with uniform comparative advantages fare better, whereas specialists

experience worse outcomes.
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1 Introduction

Automation technologies had significant impact on the wage structure in the United States

(Acemoglu and Restrepo (2022)). AI technologies that can potentially automate many

tasks may have significant implications for the labor market (Trammell and Korinek (2023),

McElheran et al. (2024)), especially considering the recent improvements in these tech-

nologies and the widening use cases (Bick, Blandin, and Deming (2024) and Handa et al.

(2025)). There are several studies so far that measure AI exposure scores for occupations

(among them, Brynjolfsson, Mitchell, and Rock (2018), Webb (2020), Felten, Raj, and

Seamans (2018), Eloundou et al. (2023), and Handa et al. (2025)). However, the infor-

mation content of these measures may be lacking in terms of understanding the welfare

impacts, since these studies do not take into account the worker reallocation resulting from

the AI technologies shifting prices and labor demand. This general equilibrium effects can

mitigate the income loss for those who are replaced. On the other hand, the GE effects

are likely to be adverse for those who are not directly exposed to AI, but face higher

competition in the labor market due to worker reallocation.

With this concern in mind, I study the impact of AI, specifically, LLM technologies, on the

wage distribution across workers and the employment distribution across the occupations.

I build a framework where workers can reallocate across occupations as a result of prices

changing due to the AI technologies. There are two main ingredients of the general equi-

librium. First one is the AI automation shock, which I measure in the form of automation

scores. To generate the scores, I follow Eloundou et al. (2023) and Eisfeldt et al. (2023) by

asking an LLM to assess if a task associated with an occupation can be automated given

the description of the task.

I assume that the smallest unit of production are tasks, as common in the automation liter-

ature (Acemoglu and Restrepo (2022), Acemoglu and Restrepo (2018) and Acemoglu, Au-

tor, et al. (2022) and Humlum (2021)). Some of the tasks can be automated, in which case

they are entirely performed by the AI technologies. Workers perform the non-automated

tasks, and their productivity increase when some of the tasks they used to perform gets

automated.

The other ingredient is understanding how workers choose their occupations and what

determines their wage. To understand this, I set up a labor supply framework where

workers face a dynamic discrete choice problem. Every period, they make a decision

on staying in their current occupation or switching to a different occupation subject to

switching costs. Wages are functions of some observables and the unobserved comparative
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advantage. Comparative advantage is allowed to differ across workers and occupations,

hence two workers of the same observed characteristics can make different occupation

choices even in the absence of any switching costs.

I estimate the comparative advantage vectors using the wage regression. Identification of

the comparative advantage vectors comes from from occupation-to-occupation transitions,

which allows me to assess worker’s productivity across different occupations. The compar-

ative advantage of a worker in occupation o would be roughly their wage in occupation

o compared to the average wage in that occupation, averaged over the years. However,

this identification method fails because no worker has an employment history across all

occupations. To overcome this, I assume that there are finite worker types, where each

type represents a latent group of workers who share a similar, unobserved comparative ad-

vantage vector. These types are not pre-defined but are estimated directly from the data.

This way, the employment history of the set of workers who belong to the same type spans

the set of all occupations, and the comparative advantage vector can be identified.

Estimation of the type probabilities1 and the wage regression2 simultaneously is not a com-

putationally feasible task. Therefore, I use an Expectation-Maximization algorithm which

updates the type probabilities and wage regression sequentially, and eventually converging

to the maximum. Specifically, I follow Arcidiacono and Miller (2011) which lets me esti-

mate the wage regression parameters with unknown types first, and the switching costs in

the next stage.

In order to estimate the switching costs, I utilize the relationship between the transition

probabilities, which are recovered during the first stage of the estimation, value functions

and the switching costs. Taking the difference of the value function of two workers who

start and end up in the same occupations3, the same relationship can be expressed in terms

of the transition probabilities and the wage differential between the two workers, both of

which are estimated during the first stage of the estimation, and switching costs, which

can be estimated using the first two estimated variables.

For estimation, I use an administrative German panel data which tracks the employment

history of workers between years 1998-20214. This is a panel data that contains the em-

1In the actual estimation process, each worker has a strictly positive probability of being any type due

to the way the probabilities are constructed to maximize the likelihood.
2Conditional choice probabilities are also estimated as part of the likelihood. See Section B for addi-

tional details.
3This is due to the finite dependence property which allows differencing out the lifetime value functions

(Arcidiacono and Miller (2011))
4While the raw data covers earlier years, I use the data starting 1998. For a discussion on the data

3



ployment status, occupational choice and wages of the 2% randomly selected sample of all

individuals in Germany. The data includes the occupations and earnings history of work-

ers along with some individual characteristics such as age and schooling. Employing this

administrative data with many occupation to occupation transitions allow me to identify

the comparative advantage parameters5.

Having estimates of the wage equation parameters, I can compute counterfactual wages

given any initial price shock, or under any worker reallocation. AI technologies make

the workers more productive by having them allocate the time spent on the automated

tasks to the non-automated tasks. This additional productivity causes wages to increase,

while on the other hand reducing the price of the exposed occupations due to increased

quantity. In essence, AI technologies are a price shock as it distorts the occupation prices,

and this triggers a worker reallocation. With the estimates of the type probabilities and

the wage regression paramaters, I calculate the counterfactual wages, and the occupation

choice which offers the highest wage. Then I solve for the new steady state where the AI

technologies automate certain tasks.

I contribute to the automation literature, mainly to those concerning the AI automa-

tion, including the aforementioned works such as Brynjolfsson, Mitchell, and Rock (2018),

Eloundou et al. (2023), Felten, Raj, and Seamans (2018) and Webb (2020), Mckinsey &

Company (2023), Humlum and Vestergaard (2024) Handa et al. (2025), by studying the

effects of the AI automation in a general equilibrium that incorporates worker reallocation.

While the exposure scores are informative, there is no guaranteed one-to-one relationship

between the AI automation exposure scores and the occupational prices or wages of the

workers in that occupation. For example, if highly exposed translators have a positive

comparative advantage only in the occupation “translators”, then they might be adversely

affected by the AI automation. On the other hand, if another highly exposed group,

computer scientists, have a comparative advantage in an unaffected occupation, such as

engineering, then they will move to that occupation and mitigate the adverse effects of the

AI automation.

This study also adds to the previous work that study the general equilibrium effects of the

automation shocks using a reduced form analysis, such as Acemoglu and Restrepo (2022).

In Acemoglu and Restrepo (2022), authors estimate a propagation matrix of the automa-

tion shock that measures the propagation of an automation shock to a set of tasks to the

other tasks. The contribution of this study on this strand of literature is that I am struc-

cleaning procedure, please see Section 4
5Since most granular task descriptions and AI exposure metrics are tied to the US O*NET classification,

a key step in my analysis involves mapping the German occupational codes to their O*NET equivalents.
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turally estimating this propagation matrix, which depends on the primitives of the model

environment and worker characteristics and comparative advantage vectors. A reduced

form approach is not feasible for the case of AI automation shock since AI technologies

are in adoption phase, however, a structural approach also gives me flexibility in terms of

measuring the labor market responses to any degree of AI automation shock.

I find that all-rounder workers with no very distinct comparative advantage across occu-

pations are able to allocate more optimally against the AI shock. AI shock hits the occu-

pations in significantly varying degrees. Workers are usually employed in the occupations

they have a positive comparative advantage in. Specialist workers, that is, workers with

distinct comparative advantage in one or a few occupations find it more costly to switch

to another occupation, since they would lose their comparative advantage upon switching.

On the other hand, all-rounders, workers with no distinct comparative advantage in any

occupation do not face this opportunity cost, and switching to another occupation does not

induce a large opportunity cost for them. As such, against the AI shock, the all-rounders

are more positively affected compared to the specialists.

In a parallel work, Smeets, Tian, and Traiberman (n.d.) studies the AI shock using Den-

mark data. They account for the worker reallocation as well, using a dynamic discrete

choice model to uncover comparative advantage. They calibrate the AI shock using the

automation scores calculated by Eloundou et al. (2023). They find that the lower-income

workers are worse-off in absolute terms, whereas middle income workers seem to benefit

the most from the AI shock6. There are two distinct differences between the assumptions

of the two studies. First, they use a different exposure measure than what I use for this

study. Second, in the supply side they assume sectors that host occupations, and they cali-

brate the elasticity of substitution between sectoral outputs to 0.2 following Atalay (2017).

Third, the way they calibrate the AI shock may decrease the productivity in some sectors.

The large complementarity between sectors, also implying a complementarity between the

occupations is likely the driver of the outcomes between the two models. Calibration of

the AI shock would mostly explain the difference between the average wages between the

pre and post-AI shocks equilibrium.

In Section 2, I lay out the production hierarchy and the production technologies. Also in

this section, I provide the equilibrium conditions; market clearing conditions for both the

goods and the labor market, optimal consumption rules for household and profit maximiza-

tion problem for the firms. Following that, I describe the labor supply side and the workers’

6I compare the results in this paper with the no-field-reallocation setup of Smeets, Tian, and Traiber-

man (n.d.) since they are the most comparable models.
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dynamic choice problem. In Section 3, I provide details about the estimation of the wage

parameters and the type probabilities. Next, I describe the second stage where I estimate

the switching costs utilizing the first stage estimates. In Section 4, I provide relevant facts

about the data including occupational transition rates and details for the construction of

the panel that I use for the estimation. Following this, I describe the matching procedure

from the German occupation classification (KldB-2010) to the US O*NET SOC classifica-

tion, where I get some occupation metrics from. Furthermore, this section also covers the

process for generating the AI automation scores. In Section 5, I describe how I numerically

construct the post-AI equilibrium. This relies on shifting the workers between occupations

such that their wages are maximized. Then I discuss the estimation results including the

wage distribution, employment distribution along with some important parameters such

as comparative advantage vectors.

2 Theory

2.1 Production

The economy is populated by human workers7 normalized to unity. Time is discrete. Every

period, each worker chooses among O different occupations to work. Each occupation

consists of a series of tasks, where tasks can either be performed by human workers or the

AI technology.

AI technology is perfect substitute for human labor, and it has zero rental cost. AI tech-

nology is infinitely more productive than human workers in the tasks it can perform.

Therefore, human workers create a bottleneck in the production in the sense that the AI

technology can be scaled infinitely whereas the human worker output is costly to scale.

Human worker output is the sole determinant of the output of the occupations, whereas

the tasks that are performed by the AI technology has no effect on output.

To solidify the idea, consider the occupation of translator. Suppose the AI technology

performs the translation and the only task to be performed by human workers is to review

the translation. Then, the translator output is entirely determined by how fast a human

translator can review the translation of the AI technology8.

7Throughout the paper I use workers and human workers interchangeably, as well as AI, AI technologies

and automation technology.
8Another example would be a researcher doing a literature review. 50 years ago this task would involve

going to a library and skimming through journals to find relevant studies. Now, this task only involves the

skimming through the literature and not the going to the library part for most cases. Hence, the researcher

should be able to allocate the time from commuting to the library to searching through the internet, and
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The production technology for occupation o at time t is denoted by Yot and is assumed to

have the following function form.

Yot = Mo

 ∑
τ∈τo\τA

Y
θ−1
θ

τt

 θ
θ−1

(1)

where τo denotes the set of tasks associated with occupation o and τA denotes the set of

tasks that are automated. Mo > 1 is a productivity multiplier due to time reallocation of

human workers from the automated tasks to the task they are performing. Denoting the

share of automated tasks in occupation o by mo, the formula productivity multiplier is as

follows.

Mo =
1

1−mo

(2)

Production in task τ is solely determined by human workers’ productivity.

Yτt =
∑
n∈Lot

znot (3)

where Lot is the set of workers in occupation o at time t and znot denotes the productivity

of worker n in occupation o at time t.

Finally, the consumption basket of the households is a CES combination of the consumption

of the individual occupation outputs.

cnt =

(
O∑

o=1

µ
1
ρ
o c

ρ−1
ρ

ont

) ρ
ρ−1

(4)

Here, µo denotes the occupation demand shifter for the occupation o output. Denoting the

time t aggregate price level as Pt and the occupation o price level as Pot, and along with

the market clearing conditions, optimal consumption dictates

Yot = µoYt

(
Pot

Pt

)−ρ

(5)

Every occupation is a perfectly competitive market, and the wage of a worker is equal to

the marginal productivity of the worker times the price of the occupation output.

wnt = Mo × pont × znontt (6)

where ont is the occupation choice of worker n at time t.

the output of this task is solely determined by how productive the researcher is in searching through the

web for relevant studies.
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2.2 Labor Supply

Having set up the labor demand side, this section provides details about the labor supply.

Each period, workers face a problem where they have to choose between staying in their

current occupation or switching to another occupation. They are subject to switching costs

upon switching occupations, and also switching cost shocks. There is no savings, that is,

everyone in the economy is hand-to-mouth consumers. Workers maximize their expected

lifetime utility given as

E0

T∑
t=0

βtu(cnt) (7)

The flow utility of worker n who is working in occupation ont at time t is as follows.

u(cnt) = wnt + Sn(ξnt, ont|ont−1, ωnt) (8)

where Sn(·) denotes the cost associated with switching from occupation ont−1 to ont. ωnt de-

notes the worker characteristics that the switching costs depend on. For ease of expression,

switching cost function can be separated into two terms as follows.

Sn(ξnt, ont|ont−1) = sn(ont|ont−1, ωnt) + ξontont−1nt (9)

so that the deterministic part sn(ont|ont−1, ωnt) and the stochastic part ξontont−1nt are sep-

arated. For convenience, replace ont with o′ and ont−1 with o. Under certain conditions,

worker n’s problem can be written as a Bellman equation as follows.

Vt(o
′, ht, Ht) = max

o′′
{Etwno′t + sn(o

′|o, ωnt) + ξo′ont + βEtVt+1(o
′′, ht+1, Ht+1)} (10)

where ht is the set of individual state and Ht is the set of aggregate state variables. vt(·) is
the value function associated with choosing a specific occupation at time t whereas Vt+1(·)
is the value function associated with optimal occupation choice from time t + 1 and on.

There is an expectation term on w, since I assume the wage shocks are unobserved before

making the occupation choice. Switching cost shocks, on the other hand, are observed

before the occupation choice. I also assume that the switching cost shocks follow Type

I extreme value distribution (ξ ∼ F (0, γ)) with scale parameter equal to γ and location

parameter equal to 0. This yields the following recursive formulation (Rust (1987)).

vt(o
′, ht, Ht, ωnt) =Etwno′t + sn(o

′|o, ωnt) + ξo′ont

+ γ

∫
ξ

log
∑
o′

exp

(
β

γ
vt+1(o

′, ht+1, Ht+1, ξ)

)
dF (ξ) + βγce (11)

8



where ce is the Euler–Mascheroni constant. Time t+1 unconditional value function (Vt+1(·))
can be manipulated to define a relationship between the value functions and the transition

probabilities.

EtVt+1(o
′, ht+1, Ht+1, ωnt+1) =Et

[
vt+1(o

′, ht+1, Ht+1, ωnt+1, ξ)

− γ log π (o′|o′, ht+1, Ht+1, ωnt+1)
]
+ γce (12)

This representation will be critical in estimation of the switching costs as it relates the value

function to the conditional choice probabilities. Given two different workers who end up

at the same occupation with the same individual states, the lifetime value differential can

be reduced to utility differentials between the two workers. Utility differentials are linear

functions of expected wages and switching costs. Conditional choice probabilities and the

expected wages can be recovered from the data. This allows me to estimate switching costs

via a regression. More details on the mathematical identity between the choice (transition)

probabilities, expected wages and the switching costs can be found in Section 3.

2.3 State Variables

ht represents the individual state variables, age, schooling category and the unobserved

productivity parameters for the worker. In practice, estimating productivity parameters

for each worker is not feasible because (i) not all of the workers have a work history across

all the occupations and (ii) even if they did, they need to have worked at least two periods

for each occupation for identification of the productivity parameters. Instead, I assume

that each worker belongs to one of the finite types i ∈ {1, . . . , I}. This assumption resolves

both problems mentioned before because all types are going to exhibit work histories across

all the occupations. Due to the nature of the estimation procedure which will be explained

in Section 3, all workers have a strictly positive probability of being any type. Hence, this

rules out the concern where very little number of workers belonging to a type and causing

identification problems. Ht, on the other hand, represents the only aggregate state variable

which are the occupational output prices. Workers can perfectly forecast the individual

state variables, age and the time-invariant type, since they are non-stochastic. Imposing

a forecasting method for the aggregate state (occupational prices) is not necessary for the

estimation purposes, since I am following Arcidiacono and Miller (2011) which allows me

to work with empirical transition rates.

Wage of worker n is equal to worker n’s productivity in occupation o multiplied by the

price of the occupation worker n employed at.

wnt = pont × znontt
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where znot is the productivity of worker n in occupation o at time t. Productivity of a

worker is, in logarithmic form, a linear function of their individual state variables.

log znontt = β1 × Agent + β2Age
2
nt + β3Schooling + AAi(n)ont + σoεnt (13)

where AAio denotes the absolute advantage of worker type i in occupation o. However,

absolute advantage parameters cannot be identified because there is a perfect collinearity

between them and the occupational prices (pot). To see this, consider two economies where

every worker is twice productive in the first economy compared to other, whereas the oc-

cupational prices are equal to the half of those in the second economy. Then, the average

wages would be equal in both economies. For this reason, productivity parameters can be

estimated only up to a difference from a benchmark type, which is essentially the compar-

ative advantage. Hence, I estimate this equation setting type 1 as the benchmark type. εnt

is the idiosyncratic wage shock which is unobserved before making the occupation choice.

It is assumed to be independent of all state variables, individual or aggregate. σo regulates

the standard deviation of the wage shocks, which depends on the occupation.

2.4 Equilibrium

This section lays out the equilibrium conditions for the post-AI equilibrium economy. For

the pre-AI automation economy the exact conditions apply except τA = ∅ or Mo = 1∀o ∈
{1, . . . , O}.

Workers maximize their lifetime utility by choosing an occupation in a forward looking

manner. The forward looking behavior is both due to the switching costs and also the

evolving occupational prices. Because the switches are costly, a worker might wait until it

is the right time to switch occupations, that is, until they are hit with a favorable switching

cost shock. I do not consider any functional form for forecasting the occupational prices

since the estimation procedure does not require so.

max
cnt,ont

E0

T∑
t=0

u(cnt) (14)

s. to cnt = wnt + Sn(ξnt, ont|ont−1) (15)

Each individual must be working in the occupation that offers the highest expected dis-

counted lifetime utility. Mathematically

EtV
n
t (o) > EtV

n
t (o

′) ∀o′ ∈ {1, . . . , O} (16)

where V n
t (o) denotes the discounted lifetime utility given the occupation choice o for worker

n at time t.
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Firms combine task outputs (Yτt) and produce occupational outputs (Yot). Each occupation

is a perfectly competitive market. Individual behavior of the firms are irrelevant since I

can ignore them and work on occupation level variables to establish the equilibrium.

There is no rental cost for the AI technology. With free entry condition, all firms make 0

profit. Therefore the marginal cost must be equal to the output price for all firms in all

occupations.

pot =
1

Mo

wnt

znot
∀n ∈ Lot (17)

In the equilibrium, there may be more than one type of labor working within an occupation,

which may result with more than one wage per firm.

Market clearing condition for the labor market is

O∑
o=1

Lot = 1, ∀t (18)

and for the goods market

Cot = Yot, ∀o, t (19)

3 Estimation

Without the unobserved types, the estimation procedure would be running two sets of

regressions to estimate the income regression and switching cost parameters that maximize

the likelihood. Due to unknown worker type probabilities, one must also estimate the vector

of type probabilities for each worker. Type probabilities are estimated such that workers’

history is aligned with being that type. For example, suppose the wage regression for the

type 1 workers indicate a positive comparative advantage for a particular occupation (call

it occupation 1) and a negative comparative advantage for another occupation occupation

2). Consider a worker who earns more than average controlling for their observables in

occupation 1 (see Figure 2). Suppose this worker also earn less than average in occupation

2, controlling for the observables. Then, this worker is likely to have a positive comparative

advantage in occupation 1 and a negative comparative advantage in occupation 2. It follows

that the worker must be attached a relatively high probability of being type 1 compared

to the average type 1 probability of population.

This is a typical problem that is estimated via an Expectation-Maximization (EM) algo-

rithm. The idea behind the EM algorithm is maximizing the total likelihood in two steps.

First step involves maximizing the log-likelihood given a type probability vector for each
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Figure 1: Visualized Estimation Procedure

Input Data: Wages, Tran-

sitions, Observables (ωnt)

Maximization Step (M-step)

Given current qni:

� Estimate Wage Params & Prices (βw)

via weighted OLS (Eq. 4).

� Estimate Transition Probs (π̂(o′|o)) via
weighted Ridge Logit (Eq. 5).

Expectation Step (E-step)

Given new params (βw, π̂(o′|o)):
� Calculate individual likelihoods Ln|i (Eq.

2).

� Update Type Probs (qni) using Bayes’

Rule (Eq. 7).

Process

Uses all converged params from Stage 1:

� Construct utility/probability terms for

Eq. 12.

� Estimate switching cost params via

OLS.

Final Parameters: βw,∗, π̂(o
′|o), q∗

ni

Stage 1: EM Algorithm

Stage 2: Switching

Costs Estimation

Initial Type Probabilities (qni)

Iterate until

convergence

Converged Outputs:

q∗ni, π̂(o
′|o),βw,∗
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worker. Next step involves updating the type probabilities via Bayesian update. These two

steps are repeated until the likelihood converges. I perform the EM algorithm for the first

stage to calculate the wage regression parameters, occupational prices, type probabilities

and transition matrices.

Switching costs can be recovered having obtained the estimates from the first stage. I

provide additional details about the second stage of the regression where the switching

costs are estimated in Section 3.2.

First, let us define the object that is to be maximized. The log-likelihood for a single

observation conditional on the worker being type i as follows

Lnt|i = f(wnontt|ωnt, type = i)× π(ont|ont−1, ωnt, type = i) (20)

where f(·) is the Gaussian distribution and π(·) denotes the transition probability from

last period’s occupation to this period’s. ωnt denotes the vector of observables for worker n

at time t, that are age and schooling. Likelihood contribution due to a worker is then

Ln|i =
T∏
t=1

f(wnontt|ωnt, type = i)× π(ont|ont−1, ωnt, type = i) (21)

Unconditional likelihood is the integral (in this case, the weighted sum) of the individual

likelihood contributions with respect to the type probabilities. The total log-likelihood is

therefore

L =
N∏

n=1

I∏
i=1

qni

T∏
t=1

[f(wnontt|ωnt, type = i)× π(ont|ont−1, ωnt, type = i)] (22)

where qni denotes the probability attached to worker n being type i. EM algorithm allows

estimating qni and the conditional likelihood in two different stages instead of tackling a

very high dimensional problem. However, π(·) depends on both the first and the second

stage parameters, as transition probabilities depend on the comparative advantage vectors,

as well as the switching cost parameters and shocks. Therefore, maximization of this like-

lihood involves finding a fixed point for the the contemporaneously estimated parameters

for the transition probabilities and wage regression as well as the switching cost parameters

estimated in sequence9. Doing this at every iteration of the EM algorithm is computation-

ally infeasible. Furthermore, I would need to impose additional structure on the model by

defining forecasting rules for the workers for the aggregate states10.

9Since this particular estimation is a finite dynamic programming problem, one needs to perform a

backward recursion to solve for the transition probabilities
10In case of rational expectations one would have to find another fixed point for the forecasting rule

and the actual realizations for the aggregate state variable.

13



To overcome this problem, I follow (Arcidiacono and Miller, 2011) for the estimation, which

allows me to treat the transition probabilities as something to be empirically estimated

from the data, instead of calculating as part of the fixed point or the recursive problem.

Following sections describe in detail the estimation process, where it is also visualized in

Figure 1.

3.1 First Stage

The EM algorithm starts off by initiating type probability vectors for all workers. The

only hard rule for the initial type probabilities is that they must not be perfectly uniform.

If the initial type probabilities are left very close to uniform then the maximization step

yields the same parameters for every type and thus the EM algorithm cannot converge.

There has to be some diversity between the type vectors so that the maximization step

of the EM algorithm can generate different sets of parameters for each type, and start to

converge from there.

I divide the occupations into 4 categories, based on a rough measure of how similar their

names are. For each worker, I assign initial type probabilities depending on the share of

their occupation history in each occupation category. Even when a worker spent all their

career in one occupation group, the resulting initial type probabilities indicate a some

nudge towards one type and are not very definitive.

3.1.1 Maximization Step

Maximization step involves estimating a weighted regression for the wage regression, and

another weighted regression for generating empirical transition probabilities. Occupational

prices are estimated as part of the wage regression. Occupational prices do not depend on

worker types, and a the way to ensure that is to estimate the wage regression for all types

in a single equation, where the occupational prices are not differentiated with respect to

worker types.

I use 34 occupations and 4 types, which requires estimating 34× 3 comparative advantage

parameters. While technically feasible, some occupations are similar in the skills they

require11. Instead of estimating 34 productivity variables for each type, I reduce the di-

mension in the occupation space by generating a lower-dimensional skills vector12. This

idea is similar to generating a distance measure between the tasks. If two occupations are

11For example “Occupations in plastic-making and -processing, and wood-working and processing” and

“Occupations in production and processing of raw materials, glass- and ceramic-making and processing”.
12Smeets, Tian, and Traiberman (n.d.) uses the same dimension reduction approach.
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similar, then workers who have comparative advantage in occupation are likely to have

comparative advantage in the other occupation as well.

To do so, I use quantified occupation characteristics from O*NET database, such as “im-

portance” of mathematics, reading comprehension, negotiation, etc. Then I use the first 8

principal components of this very high-dimensional information13. Thanks to this dimen-

sion reduction I have to estimate 3×8 comparative advantage parameters, instead of 3×34
comparative advantage parameters.

logwinontt = pot + β1 × Agent + β2Age
2
nt + β3Schooling + 1{i ̸= 1}Γoβ

i
CA + σoεnt (23)

where Γo represents the skill shifters (first 8 principal components) and βi
CA represents the

skill vector corresponding to the first 8 principal components. This regression is estiamted

via weighted OLS, where the estimation matrix is stacked for each type, and qni enter as

observation weights.

For estimating the transition probabilities, Arcidiacono and Miller, 2011 suggests using the

empirical distribution of the transitions. Specifically, a bin estimator as follows

π(h2, o2|h1, o1) =

∑N
n=1 qni1(hnt = h2, ont = o2, hnt−1 = h1, ont−1 = o1)∑N

n=1 qni1(hhnt−1 = h1, ont−1 = o1
(24)

Where h are individual state variables, age and schooling. In practice, this bin estimator

is not a reliable measure because partitioning the data based on individual state variables

and occupation result with very few observations for some (age, schooling and occupation)

triplets. Traiberman (2019) faces the same problem and uses a linear probability model

to approximate the bin estimator while Ransom (2022) uses a logit estimator. I find that

both approaches lead to numerical instabilities in my case. With an LPM model, numerical

instability arises because the predicted probabilities are not bound between 0 and 1. With

the logit model, some estimations do not converge given very few observations for some

transitions. Therefore, I rely on an L2-regularized (ridge) logit to keep the parameter

estimates from taking unreasonable values when there are only a few observations for a

transition14.

13First 8 principal components explain 82.5% of the variance in the entire information matrix. More

information on the construction of the principal components can be found in Section C.2.
14It is also possible to assign some default parameters when there are very few observations for any

transition. This does not work in practice because the logit estimator may fail to converge with, for

example, 10 transitions whereas it may converge with a single transition only. As such, the cases of failed

convergence are not characterized by an observation threshold. Hence, assigning default large negative

values for the failed cases creates a negative bias for the transitions with enough number of observations

yet where the logit estimator does not converge.
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3.1.2 Expectation Step

In this step, type probabilities are updated by Bayesian updating. The intuition behind

the updating procedure is as follows. Consider an EM estimation with two types. There

are two set of parameters estimated for each type. If a worker’s likelihood contribution can

be better explained with a particular set of parameters belonging to a certain type, than

the probability that the person is that type increases. Formally, the updating formula is

as follows.

q
(m+1)
ni =

Ln|iq
(m)(i|ωobs

n1 )∑
i′ Ln|i′q(m)(i′|ωobs

n1 )
(25)

where q(i|ωobs) relates the distribution of being type i to the observables at time t = 1

(Arcidiacono and Miller (2011)). This allows me to take into account that the initial

individual state variables, age and schooling, might be reflective of the unobserved type.

q(i, ωobs) is updated at every iteration of the EM algorithm since the type probabilities

change at every iteration.

3.1.3 Identification of Worker Types

Identification of types relies on two observables, wages and transitions. Consider a group

of workers who earn more than average in a certain occupation, after controlling for their

observable characteristics such as age and schooling. This implies that their unobservable

comparative advantage for that occupation is likely to be positive. These group of workers

are likely to be the same type if they exhibit similar wage patterns in other occupations

as well (see Figure 2).

Transitions also determine the worker types. Consider two types of workers, high and

low skill. High skill occupations are mostly populated by high skill workers, whereas low

skill jobs present a bit more diversity in terms of skill-mix. Transition histories for these

two types of workers will look different in the sense that while the high skill workers can

transition between low and high skill occupations, low skill workers can only transition

between the low skill occupations (see Figure 3)

Identification of a price of an occupation also relies on the same conditions for the iden-

tification of the types working in that occupation. To see when the identification of an

occupation price may not be possible, consider a type of workers are only employed in

a single occupation. Because this type’s comparative advantage cannot be identified due

to not being employed in any other occupation, the price of the occupation cannot be

identified in the wage equation as well. The estimates for occupation prices and the com-

parative advantage parameters are more robust when workers (especially of different types)
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Figure 2: Worker Types and Comparative Advantage (CA).

Wages

Occupation 1 Occupation 2

Mean Wage

High Earners

Average Earners

Average Earners

Low Earners

Note: A group of workers (red dots) who earn more than average in Occupa-

tion 1 also earn less than average in Occupation 2, suggesting they belong to

a specific unobserved type.

Figure 3: Worker Types and Transitions

Low Skill

Occupations

High Skill

Occupations

Low Skill Workers

High Skill Workers

Note: High skill workers (blue) can transition between both high and low

skill occupations. Low skill workers (red) are restricted to transitions within

low skill occupations. The transition histories are likely to separate this two

groups of workers into different types.
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transition between different occupations.

3.2 Second Stage

Estimation of the switching costs relies on exploiting two occupation transition paths that

start at the same occupation (o) and ends at another occupation (both at o′). At the

end of this transition paths, continuation values are the same for two workers with the

same individual states. This allows writing down the transition probabilities in Eq. B.3 in

terms of flow utilities and switching costs (for the full derivation of the conditional choice

probabilities see Section B.3).

log

(
πt(o

′|o, ht, Ht, ωnt)

πt(o|o, ht, Ht, ωnt)

)
+β log

(
πt+1(o

′|o′, ht+1, Ht+1, ωnt+1)

πt+1(o′|o, ht+1, Ht+1, ωnt+1)

)
=

1

γ
Et [wno′t − wnot] +

1− β

γ
sn(o

′|o, ωnt) +
1

γ
[ξo′ont − ξo′ont+1]

(26)

Transition probabilities and expected wage differentials are recovered in the first stage.

Following the first stage, I estimate this equation via OLS where the discount factor β =

0.96.

Estimation of the switching costs reliably requires a sufficient amount of transition between

each occupation pair. This is not the case for each occupation pair, and to overcome that,

I follow Ransom (2022) and Traiberman (2019), and define a measure of distance between

two occupations, and assume that the switching cost is a linear function of distance along

with a fixed cost for the origin equation. This transformation can be shown as follows.

sn(o
′|o, ωnt) = αo

0 + α1d(o, o
′) (27)

Ransom (2022) estimates switching costs between locations, which has a natural measure

for distance. Traiberman (2019) uses the principal components to generate Mahalanobis

measure, which scales down the principal components as well as taking into account the

correlation between the principal components. I use the principal component vectors associ-

ated with each occupation and then measure the Euclidean distance between the associated

vectors with every occupation. Euclidean distance does not scale the variance of the prin-

cipal components. I find this more informative since principal components are ordered in

terms of explaining the total variance hence the information content. Accordingly, a prin-

cipal component of higher variance will have a larger weight with the Euclidean distance

measure.
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4 Data

4.1 Labor Panel

I use an administrative German data, Sample of Integrated Labour Market Biographies,

which contains a 2 percent random sample from all individuals in Germany (Graf et al.

(2023)). The data covers the period between 1975 and 2021, and has information on the

ID, age, employment status, occupation, schooling, gender and income. Some information

is anonymized further or provided in restricted detail. Wages are rounded to the nearest

integer. For schooling, I define two categories, university education and all the other

lower degrees since the data doesn’t provide a fine grained information on the schooling

variable.

I use the data from 1998 and onwards15. The occupation classification for the data is KldB

2010. While the data reported from after November 2011 uses KldB2010, the data reported

before uses KldB 1998 classification, which are converted to KldB 2010 classification by

the data provider.

I use O*NET database to get the task descriptions and the information on attributes

such as skills and knowledge relevant for the tasks. O*NET database uses SOC 2019

classification, however, there are no direct crosswalks between SOC 2019 and KldB 2010

classifications. To this end, I use ISCO-08 occupation classification and first transcode SOC

2019 occupations to ISCO-08 classification and from there to KldB 2010 classification.

For generating the principal components, I follow Traiberman (2019) use “Knowledge”,

“Skills”,“Work Activities” and “Abilities” attributes from O*NET database. For each

attribute, there are two measures, “Importance” and “Level”. I follow Firpo, Fortin, and

Lemieux (2011) and assign 2/3 and 1/3 geometric weights, respectively, to generate a single

15After 1998 the employers started reporting earnings below some threshold. While the effect this

change on the estimation is probably negligible, another reason I opted to start from 1998 is mainly due

to memory limitations on the server that I am running the estimation. I estimate the wage regression for

4 types at the same time to estimate a single set of prices, and this requires stacking 4 wage regression

matrix. Hence, the memory that the estimation requires roughly quadrupled. In addition to this, some

data operations cannot be performed in-place, resulting in additional large matrices being created and

increasing the RAM requirement. While there are some methods in R to bypass RAM limitations by using

an SQL database or other methods that work over the hard disk instead of RAM, almost none of the

options are usable due to the restrictions on the machine that I run the estimation on. For this reason, I

further limit the sample size by randomly selecting some worker IDs after the data cleaning process. Even

then, I have to rely on memory-efficient estimation processes such as incremental QR decomposition and

using sparse matrices.
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measure. This leaves me with 160 attributes for each occupation, for which I apply principal

components dimension reduction to generate 8 new attributes. In Appendix section C, I

detail the most important attributes for the first 8 principal components.

4.2 AI Exposure Scores

To compute the post-AI general equilibrium I need binary exposure scores for each task

in every occupation. To achieve this, I follow Eloundou et al. (2023) and Eisfeldt et al.

(2023) and generate the scores using an LLM. Specifically, I provide the LLM a task

description and provide clear instructions to determine whether it can be automated by

LLM technologies or not. I do this for every task description under all occupations in

the O*NET database, and calculate the exposure scores by taking simple average across

task automation scores16,17,18. Then, using relevant crosswalks, I aggregate the scores

generated by the LLM to KldB-2010 2-digit level occupations. Exposure scores for the

2-digit KldB-2010 occupations are in Table A2.

5 Results

First I present a discussion of the estimation results; wage parameters, including the com-

parative advantage vectors, type distributions and switching costs. These are not equi-

librium dependent objects, instead they are inherent attributes for the workers and the

environment. Then I move onto the post-AI equilibrium where I discuss the wage changes

and the employment shifts between occupations.

Figure 1 shows the comparative advantage of the three types in all occupation groups19 in

comparison to the first type. Hence, the first type has 0 comparative advantage across all

occupations.

Type 1 workers has a comparative advantage in Business, Law & Administrative occupa-

tions along with STEM and Commerce & Logistics occupation groups. Type 2 and type

16I use an initial “system” prompt to assign the LLM a clear role in identifying whether a task can be

automated or not. The system prompt follows Eisfeldt et al. (2023) with some changes that takes into

account the advancements in the LLMs since then.
17I experimented with OpenAI GPT-5, GPT-5 mini, GPT-5 nano, Google Gemini 2.5 Pro, 2.5 Flash,

2.5 Flash Lite and Claude Sonnet 4.0. Based on the input/output tokens generated for roughly 20,000

tasks, state of the art models (GPT-5, Gemini 2.5 Pro and Sonnet 4.0 are very slow and expensive to

work with. Among the more speed and budget oriented model, I find that 2.5 Flash returns much more

reasonable answers based on the reasoning output.
18Exact prompt given to Gemini 2.5 Flash model can be seen in Appendix Section D.
19For the list of occupations and the corresponding occupation groups, please see Table A3.
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Figure 1: Comparative Advantage Across Occupation Groups
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Figure 2: Share of Types Across Occupation Groups

0.0

0.1

0.2

0.3

0.4

0.5

Bus
ine

ss
, L

aw
 &

 A
dm

in.

Com
m

er
ce

 &
 L

og
ist

ics

Hea
lth

, E
du

c &
 C

ult
ur

e

Pro
d,

 M
an

uf
. &

 C
on

str
'n

Ser
vic

e 
& S

af
et

y

STEM

Type 1

Type 2

Type 3

Type 4

Note: Total shares of all types for each occupation group is 1.

3 workers seem to be all-rounders whereas type 4 workers have a negative comparative

advantage in all occupation groups other than Services & Safety, Health, Education &

Culture and Production, Manufacturing & Construction (PMC) occupation groups.

When a worker type has a distinct comparative advantage in an occupation, they would

populate the occupation, increase the competition for other worker types and drive them
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Figure 3: Distribution of Types Across Occupations
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Note: Shares of all occupations for each type sum up to 1.

away. Similarly, type 4 workers are driven away from the occupation groups except Health,

Education & Culture, Production, Manufacturing & Construction and Services & Safety,

and they would face much less competition in these groups.

Figure 220 indicates that there is sorting of working types into occupations with respect

to their comparative advantage. Half of the STEM population is type 4 workers, and they

also make up on average more than 30 percent of the worker population in Business, Law &

Administrative and Commerce & Logistics occupation groups. On the other hand, type 2

and type 3 workers do not exhibit a strong sorting pattern given their uniform comparative

advantage.

5.1 Post-AI Equilibrium

In this section I present the post-AI equilibrum. To draw a reasonable comparison between

the pre and post-AI equilibria, I also calculate the pre-AI equilibrium to get rid of any other

important shock that might have occurred during the estimation period. I start from the

average of the last three years’ estimated occupational prices in both cases, and only adjust

Mo parameter that accounts for the AI automation shock. I numerically solve for the post-

AI equilibrium, starting from the original equilibrium prices. The exact algorithm for the

20This figure does not account for the fact that worker types do not have equal masses. Figure 3 shows

the same distribution of each worker type normalized for each type.
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numerical solution is described in Algorithm B2.

Since AI is introduced as a positive productivity shock, wages increase overall. However,

looking at the relative wages, there are winners and losers. Type 1 workers, who specializes

in technical occupations, and type 4 workers, who specializes in services type occupations

seem to do worse than the other types who are all-rounders (Figure 1). This indicates that

the reallocation ability is significant in terms of reaping the benefits of a sizable fluctuation

in prices (see Figure 1).

Figure 1: Relative Log-Wages Across Types
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Notes: y-axis indicate the average wage for worker types minus the unweighted

average wage over all worker types. The picture with the average weighted by

the type shares still look similar since type 1 and type 4 workers have 45% share

in the economy.

Figure 2 shows there is a strong positive correlation between the occupational price changes

and the share of automated tasks in the post-AI equilibrium21. Since the AI shock boosts

productivity of the workers, production increases in those occupations thus yielding lower

prices. Occupational outputs are substitutes and this prevents prices from falling down

too much. Hence, higher wages due to the productivity effect dominates and relatively few

workers move from the highly exposed occupations.

Figure 3 displays the worker allocation across the occupation groups for both equilibria.

The biggest reallocation is from Manufacturing & Construction occupations to Business

& Law and Administration occupations, and the majority of this particular worker flow

21While the average price in the post-AI equilibrium seems to be higher, price of the optimal consump-

tion basket are still the same in both equilibria.
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Figure 2: Changes in Occupation Prices vs. Non-Automated Task Shares
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Notes: Left y-axis is for the occupational price differences between the post-

AI equilibrium and the original equilibrium. Right y-axis is for the inverse

automated task shares.

comes from Type 1 workers. Business & Law and Administration occupations are the most

exposed to AI, whereas Manufacturing & Construction occupations are the least exposed.

However, worker types other than type 1 have negative comparative advantage in Business

& Law and Administration occupation group, and the productivity increase in this occu-

pation group is not large enough to offset the negative comparative advantage. Hence, it is

type 1 workers having the most positive comparative advantage in this group is why there

is a massive flow of type 1 workers to Business & Law and Administration occupations.

However, type 1 workers do not to gain significant benefits from this switch, or particularly

any other switch, as they have 0 comparative advantage in any occupation.

6 Conclusion

As AI technology is getting integrated into work, the future of the labor market remains a

question. In order to help with this question, many predictions regarding the occupational

exposure to AI exists. These predictions provide only half of the picture, as they do not

take worker reallocation into account. Therefore, existing occupational exposure scores are

hard to interpret. In this study, I build a framework where production can be performed

by human workers or AI automation technology. To study the reallocation, I estimate a

model of occupation choice with heterogeneous workers differing in comparative advantage

across occupations.

24



Figure 3: Worker Allocation Across the Occupation Groups
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I estimate 4 worker types, where two of them turn out to be specialists, i.e. they have

distinct comparative advantages across the occupation groups, and the other two of them

are generalists, i.e. they have uniform comparative advantage across the occupation groups.

I find that the comparative advantage and the share of types across occupations exhibit a

positive correlation, suggesting a sorting with respect to comparative advantage.

Using the automation scores I generate following Eloundou et al. (2023), I simulate an AI

shock. Then I numerically solve for the new equilibrium starting from the prices distorted

by the AI shock. I compare the original equilibrium and the post-AI equilibrium.

First, given that AI shocks are very uneven occupation groups, for many workers it is

optimal to switch to another occupation, unless they would lose on the comparative ad-

vantage front. This is usually the case for the specialists, who sort into the occupations

where they have a strong comparative advantage, and they would benefit less from moving

to another occupation. Generalists, on the other hand, do not lose much welfare upon

moving since in terms of comparative advantage they do not incur a cost as large as that

of specialists.

It is very likely that there will be both losers and winners due to AI technology, and

reallocation is a significant aspect to be able to assess the changes in the welfare. I show

that occupation of the worker is not the only variable that determines whether they will be

a loser or a winner. Unobserved comparative advantages and the ability to move into the

other occupations can put the worker ahead of the others. Understanding these mechanisms
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fully, and to assess people’s ability to move should be a strong policy concern while AI is

getting more widespread.
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A Additional Tables & Figures

Table A1: Wage Equation Estimates by Worker Type

All Types Type 1 Type 2 Type 3 Type 4

Age 0.0419

(0.0001)

Age2 -0.0004

(0.0000)

Schooling ≤ Secondary -0.1822

(0.0002)

1st PC 0 -0.0499 -0.2102 -0.1739

(0.0003) (0.0003) (0.0004)

2nd PC 0 -0.1046 -0.0713 0.0269

(0.0003) (0.0003) (0.0004)

3rd PC 0 0.1575 0.5647 0.3885

(0.0004) (0.0004) (0.0005)

4th PC 0 0.1794 0.3952 -0.0704

(0.0008) (0.0008) (0.0010)

5th PC 0 -0.3357 -0.6689 -1.2483

(0.0008) (0.0008) (0.0012)

6th PC 0 0.8912 0.6521 1.5685

(0.0009) (0.0009) (0.0011)

7th PC 0 -0.9100 -0.0996 -1.8305

(0.0012) (0.0014) (0.0017)

8th PC 0 -0.1419 -1.3706 -0.3703

(0.0011) (0.0012) (0.0015)

Notes: Occupation-year fixed effects are provided in Table ??. Standard errors are

reported in parentheses. The “All Types” column shows coefficients common to all

worker types. Principal components (PC) are type-specific transformations of occu-

pation characteristics. Type 1 coefficients for principal components are normalized to

zero. All coefficients are statistically significant at the 1% level.
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Table A2: Exposure Scores by Occupation

Occupation Score Occupation Score

Advertising, marketing, and media design 0.63 Tourism, hotels, and restaurants 0.34

Financial services, accounting, and tax 0.61 Non-medical healthcare and body care 0.34

Computer science and ICT 0.59 Metal production and construction 0.33

Business management and organization 0.59 Raw materials, glass, and ceramic processing 0.31

Humanities, social sciences, and economics 0.56 Medical and health care 0.31

Purchasing, sales, and trading 0.54 Technical building services 0.31

Law and public administration 0.49 Teaching and training 0.30

Construction planning and surveying 0.49 Cleaning services 0.29

Technical R&D, construction, and production 0.44 Mechatronics and electrical engineering 0.27

Safety, security, and surveillance 0.42 Plastic, wood, and wood processing 0.26

Math, biology, chemistry, and physics 0.42 Gardening and floristry 0.25

Traffic and logistics 0.41 Machine-building and automotive technology 0.23

Retail sales 0.40 Education, social work, and theology 0.21

Agriculture, forestry, and farming 0.36 Food production and processing 0.21

Paper, printing, and technical media design 0.35 Vehicle and transport equipment operation 0.21

Scores indicate the share of tasks within the occupation that are predicted to be automatable.
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Table A3: Occupation Groups

Occupation Group

Business management and organization Business, Law & Admin.

Financial services, accounting, and tax Business, Law & Admin.

Law and public administration Business, Law & Admin.

Traffic and logistics Commerce & Logistics

Vehicle and transport equipment operation Commerce & Logistics

Purchasing, sales, and trading Commerce & Logistics

Retail sales Commerce & Logistics

Medical and health care Health, Educ & Culture

Non-medical healthcare and body care Health, Educ & Culture

Education, social work, and theology Health, Educ & Culture

Teaching and training Health, Educ & Culture

Humanities, social sciences, and economics Health, Educ & Culture

Advertising, marketing, and media design Health, Educ & Culture

Product design, craftwork, and fine arts Health, Educ & Culture

Raw materials, glass, and ceramic processing Prod, Manuf. & Construction

Plastic, wood, and wood processing Prod, Manuf. & Construction

Paper, printing, and technical media design Prod, Manuf. & Construction

Metal production and construction Prod, Manuf. & Construction

Machine-building and automotive technology Prod, Manuf. & Construction

Textile and leather production Prod, Manuf. & Construction

Food production and processing Prod, Manuf. & Construction

Building construction Prod, Manuf. & Construction

Interior construction Prod, Manuf. & Construction

Technical building services Prod, Manuf. & Construction

Agriculture, forestry, and farming Service & Safety

Gardening and floristry Service & Safety

Safety, security, and surveillance Service & Safety

Cleaning services Service & Safety

Tourism, hotels, and restaurants Service & Safety

Mechatronics and electrical engineering STEM

Technical R&D, construction, and production STEM

Construction planning and surveying STEM

Math, biology, chemistry, and physics STEM

Computer science and ICT STEM
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Table A4: Switching Cost / Average Wage by Occupation

Occupation S̄n(·|o)/w̄ Occupation S̄n(·|o)/w̄

Agriculture, forestry, and farming 0.163 Traffic and logistics 0.524

Gardening and floristry 0.208 Vehicle and transport equipment operation 0.422

Raw materials, glass, and ceramic processing 0.178 Safety, security, and surveillance 0.352

Plastic, wood, and wood processing 0.380 Cleaning services 0.388

Paper, printing, and technical media design 0.264 Purchasing, sales, and trading 0.504

Metal production and construction 0.631 Retail sales 0.471

Machine-building and automotive technology 0.697 Tourism, hotels, and restaurants 0.334

Mechatronics and electrical engineering 0.506 Business management and organization 1.012

Technical R&D, construction, and production 0.559 Financial services, accounting, and tax 0.910

Textile and leather production 0.163 Vehicle and transport equipment operation 0.537

Food production and processing 0.408 Medical and health care 0.612

Construction planning and surveying 0.355 Non-medical healthcare and body care 0.297

Building construction 0.367 Education, social work, and theology 0.348

Interior construction 0.268 Teaching and training 0.262

Technical building services 0.436 Humanities, social sciences, and economics 0.262

Math, biology, chemistry, and physics 0.400 Advertising, marketing, and media design 0.480

Computer science and ICT 0.902 Product design, craftwork, and fine arts 0.169

Figure A1: Relative Prices Across Occupation Groups
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B Estimation Appendix

B.1 EM Algorithm

The section follows Section 3 to provide more details on the estimation procedure.

The EM algorithm is started by initiating a type distribution. To do that, I partition the

occupations in 4 groups (the same as A3), and initiate probabilities based on the share of

histories spent on each occupation groups. For example, a worker who spent all of their

career in a single occupation group would be assigned an initial probability of 0.7 to the

type initially associated with that group. During the estimation, types can be disassociated

with the occupation groups or may become associated with some other occupations. The

idea behind the initiation is to create enough diversity between types so that the wage and

transition parameters generated by the maximization step can be diverse enough. Then,

during the expectation stage, the probabilities calculated are not very uniform and the

algorithm would slowly converge from that point.

Following the initiation of the type distributions, the algorithm for the EM estimation is

provided in Algorithm B1.

I use λ = 1e− 2 for the L2-regularization. After the log-likelihood converges, I re-estimate

the parameters for the transition probabilities, this time with no penalty (λ = 0).

βi,π,∗ := argmin
βi,π

||qni
(
1d(o′|o)−Xβi,π

)
||2 (B6)

Then estimate the predicted transition probabilities for the second stage.

π̂(o′|o) := exp(Xβi,π,∗
o′ )

1 +
∑

o exp(Xβi,π,∗
o ))

(B7)

Expected wage differentials can also be recovered from the wage regression.

ˆEtwno′t − ˆEtwno′t = Xntβ
i,w
no′ −Xntβ

i,w
no (B8)

Given Eq. B7 and Eq. B8 and the distance measure between the occupations, I have all

the variables for the second stage regression. Hence, I calculate the parameters for the

scale parameter (γ) for the switching cost shocks and the distance-cost multiplier (α1) as

well as the fixed cost for switching from each occupation ({α0
o}Oo=1).

B.2 Log-Likelihood

Figure B1 provides the log-likelihood history for the estimation. I stop the EM algorithm

when the improvement in the log-likelihood get smaller than 1e− 6.
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Algorithm B1 Expectation-Maximization (EM) Algorithm for the First Stage

1: Initialize type probabilities q
(0)
ni for all n, i.

2: while the total log-likelihood has not converged do

Maximization Step

3: Estimate transition parameters βi,π,∗ for each type i via weighted L2-regularized

(ridge) regression:

βi,π,∗ := argmin
βi,π

||q(m)
ni

(
1d(o′|o)−Xβi,π

)
||2 + λ||βi,π||2/2 (B1)

4: Estimate wage parameters βi,w,∗ for each type i via weighted OLS:

βi,w,∗ := argmin
βi,w

||q(m)
ni

(
w −Xβi,w

)
||2 (B2)

5: Estimate type probability regression parameters βi,q,∗ via weighted multinomial

logit:

βi,q,∗ := argmin
βi,q

||q(m)
ni

(
1−X1β

i,q
)
||2 (B3)

Expectation Step

6: Calculate individual likelihoods Ln|i using the new parameters (βi,π,∗,βi,w,∗).

7: Generate predicted type probabilities:

q(m+1)
(
i|ωobs

n1

)
= X1β

i,q,∗ (B4)

8: Update worker-specific type probabilities using Bayes’ rule:

q
(m+1)
ni =

Ln|iq
(m+1)(i|ωobs

n1 )∑
i′ Ln|i′q(m+1)(i′|ωobs

n1 )
(B5)

9: end while
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It converges monotonically except right after the initial type probabilities are updated. This

happens because the transition probability logistic regressions may not be converging with

the initial type distributions. This may be either due to (i) the initial type distributions

over leveraging a few observations with very distinct observables compared to the average

characteristics of the workers doing this transition. This may also be driven by the logistic

regressions not converging due to the other numerical instabilities, such as those related

to very small type probabilities, which can always cause non-monotonic behavior in the

likelihood. However, since the likelihood behavior is monotonic everywhere except the very

initial phase, it is likely due to the initial probabilities being far off from the probabilities

that would maximize the likelihood.

Figure B1: Log-Likelihood for the First Stage
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Note: At 40th iteration, the improvement in the log-likelihood is less than

1e− 6.

B.3 Derivation of the Regression for the Second Stage

I start with the derivation of Eq. 12. To do that, first write down the relationship between

the time t + 1 unconditional value function and the time t + 1 value function conditional

on an occupation choice.

EtVt+1(o
′, ht+1, Ht+1, ωnt+1) = γ

∫
ξ

log
∑
o′′

exp

(
1

γ
vt+1(o

′′, ht+1, Ht+1, ωnt+1, ξ)

)
dF (ξ) + γce

(B9)
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Due to the logit property induced by the Type 1 switching cost shocks, the probability of

staying at o′ at time t+ 1 is as follows.

πt+1 (o
′|o′, ht+1, Ht+1, ωnt+1) =

exp (vt+1(o
′, ht+1, Ht+1, ωnt+1, ξ)/γ)∑

o′′ exp (vt+1(o′′, ht+1, Ht+1, ωnt+1, ξ)/γ)
(B10)

Taking the log of this probability, I get

log πt+1 (o
′|o′, ht+1, Ht+1, ωnt+1) =

vt+1(o
′, ht+1, Ht+1, ωnt+1, ξ)

γ

− log
∑
o′′

exp

(
1

γ
vt+1(o

′′, ht+1, Ht+1, ωnt+1, ξ)

)
(B11)

Substituting this into Eq. B9 yields the following expression.

EtVt+1(o
′, ht+1, Ht+1, ωnt+1) =

∫
ξ

(
vt+1(o

′, ht+1, Ht+1, ωnt+1, ξ)

− γ log πt+1 (o
′|o′, ht+1, Ht+1, ωnt+1)

)
dF (ξ) + γce (B12)

Since the terms inside the integral are conditional over future shock ξ, the integral is

equivalent to the time t expectation.

EtVt+1(o
′, ht+1, Ht+1, ωnt+1) = Et

[
vt+1(o

′, ht+1, Ht+1, ωnt+1, ξ)

− γ log πt+1 (o
′|o′, ht+1, Ht+1, ωnt+1)

]
+ γce (B13)

Combining above equation with Eq. 11, I get to the following equality.

vt(o
′, ht, Ht, ωnt) = wno′t + sn(o

′|o, ωnt) + ξo′ont

+ βvt+1(o
′′, ht+1, Ht+1, ωnt+1)− βγ log πt+1 (o

′|o′, ht+1, Ht+1, ωnt+1)

+ βγce (B14)

Now suppose this worker stays at o′ at time t+1. The value function can be written in terms

of flow utility for two periods, transition probability and the continuation value.

vt(o
′, ht, Ht, ωnt) = Etwno′t + sn(o

′|o, ωnt) + ξo′ont

+ βEt [wno′t+1 − γ log πt+1(o
′|o′, ht+1, Ht+1, ωnt+1)]

+ β2EtVt+2(o
′, ht+2, Ht+2, ωnt+2) + βγce (B15)

Writing down the same equality for a worker with the same individual states who stays in

occupation o at time t and moves onto occupation o′ at time t+ 2

vt(o, ht, Ht, ωnt) = Etwnot

+ βEt [wno′t+1 + sn(o
′|o, ωnt+1) + ξo′ont+1 + γ log πt+1(o

′|o, ht+1, Ht+1, ωnt+1)]

+ β2EtVt+2(o
′, ht+2, Ht+2, ωnt+2) + βγce (B16)
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Becauase Type 1 switching cost shocks induces logit probabilities, the value function differ-

ential between the two workers starting from the same occupation (before the occupation

choices made in time t) can be related to the time t transition probabilities.

vt(o
′, ht, Ht, ωnt)− vt(o, ht, Ht, ωnt)

γ
= log

(
πt(o

′|o, ht, Ht, ωnt)

πt(o|o, ht, Ht, ωnt)

)
(B17)

Subtracting Eq. from

γ log

(
πt(o

′|o, ht, Ht, ωnt)

πt(o|o, ht, Ht, ωnt)

)
= Et [wno′t − wnot] + [sn(o

′|o, ωnt)− βsn(o
′|o, ωnt+1)]

− γβ log

(
πt+1(o

′|o′, ht+1, Ht+1, ωnt+1)

πt+1(o′|o, ht+1, Ht+1, ωnt+1)

)
+ ξo′ont − ξo′ont+1

(B18)

Under the assumption that sn(·) does not depend on any time variant worker characteristics

such as age, this equation can be further simplified

γ log

(
πt(o

′|o, ht, Ht, ωnt)

πt(o|o, ht, Ht, ωnt)

)
= Et [wno′t − wnot] + (1− β)sn(o

′|o, ωnt)

− γβ log

(
πt+1(o

′|o′, ht+1, Ht+1, ωnt+1)

πt+1(o′|o, ht+1, Ht+1, ωnt+1)

)
+ ξo′ont − ξo′ont+1

(B19)

Combine the probability terms to the left hand side and divide both sides by γ to get

log

(
πt(o

′|o, ht, Ht, ωnt)

πt(o|o, ht, Ht, ωnt)

)
+β log

(
πt+1(o

′|o′, ht+1, Ht+1, ωnt+1)

πt+1(o′|o, ht+1, Ht+1, ωnt+1)

)
=

1

γ
Et [wno′t − wnot] +

1− β

γ
sn(o

′|o, ωnt) +
1

γ
[ξo′ont − ξo′ont+1]

(B20)

From the first stage, transition probabilities and expected wage differentials are calculated.

I estimate this equation via OLS where the discount factor β = 0.96.

B.4 Construction of the Post-AI Equilibrium

First, I calculate the preference shifters (µo) by using the expenditure shares. Starting

from Equation 5, I can single out the consumption preference shifters as follows.

µo =
Yot

Yt

(
Pot

Pt

)ρ

(B21)

Multiplying and dividing the right hand side by (Pt/Pot)
ρ−1, the consumption preference

shifters can be expressed in terms of expenditure shares, individual occupation prices and

the aggregate price level.

µo =
Yot

Yt

Pot

Pt

P 1−ρ
ot P ρ−1

t (B22)
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There is no, to my knowledge, a direct source for occupational prices. Hence, I recover

occupation prices and quantities from the stage estimations and from there, I can calculate

every term on the RHS except the aggregate price level. However, µo are independent of

Pt and. Hence, I calculate µo × P 1−ρ
t and normalize the sum of µo to 1. For the elasticity

of occupational outputs substitution (ρ), I set it to 1.78 following Burstein, Morales, and

Vogel (2019)22. I calculate two steady states, one with no AI automation and one with

AI automation. While the data is assumed to represent the steady state with no AI

automation, I am calculating the no-switching cost shocks steady state (switching costs

are still in place while there are no additional switching cost shocks). Therefore, to make

a plausible comparison between the two steady states, I also calculate the steady state for

the equilibrium with no AI technologies as well.

The iterative algorithm to find the steady state is captured in Algorithm B2. The success

of this algorithm especially relies on preventing a large number of workers from switching

simultaneously. When this happens, prices change significantly, and in the next iteration

workers who just switched find it more profitable to switch to their previous occupation. By

restricting the switches, specifically to a randomly selected 1% of the potential switchers,

the fluctuations in the occupational prices get to a manageable level where the counter-

factual wages across occupations gradually equalize until no worker finds it profitable to

switch. Furthermore, updating the prices gradually also help, although it is by itself unable

to prevent prices to jump back and forth.

Based on some trial runs, I observe that it would take either an extremely long time or

impossible to get to an equilibrium where not even a single worker would want to switch.

A few workers switching can fluctuate the prices just enough to make some others finding

it more profitable to move back where the switching costs are low enough, which puts the

algorithm into an endless loop. Therefore, I find it reasonable to stop the algorithm when

there are only 100 workers who find occupation switching profitable. At this point, true

and effective price vectors are virtually identical and running the algorithm further would

not give me any additional precision.

C Data Appendix

C.1 Data Preparation

The raw data contains more than 77 million observations after episode splitting and more

than 55 million observations before episode splitting. Data providers perform episode split-

22Authors of the study estimate this parameter with 30 occupations, using the US data.
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Algorithm B2 Equilibrium Solver for Occupational Prices and Worker Allocation

1: Initialization:

2: Calculate aggregate price level P
(0)
agg and aggregate output Y (0) from initial worker

allocation.

3: Calculate initial occupation outputs Y
(0)
o for all o.

4: Calculate initial true occupational prices:

P
(0)
o,true = µ

1
ρ
o

(
Y

(0)
o

Y (0)

)− 1
ρ

5: Set effective prices P
(0)
o ← P

(0)
o,true.

6: Set iteration k ← 0, num switchers←∞.

7: Iteration:

8: while num switchers > 100 and maxo

∣∣∣log(P (k)
o )− log(P

(k)
o,true)

∣∣∣ ≥ 0.005 do

9: k ← k + 1

10: For each worker n in occupation o
(k−1)
n , find the optimal new occupation o′n:

o∗n = argmax
o′

{
P

(k−1)
o′ zni(n)o′Mo′ −

1

1− β
sn(o

′|o(k−1)
n , i)

}
11: Identify set of potential switchers S ← {n | o∗n ̸= o

(k−1)
n }.

12: num switchers← |S|.
13: Select a random subset S ′ ⊂ S of size ⌊ηswitch × num switchers⌋.
14: Update worker allocation: o

(k)
n ← o∗n for n ∈ S ′, and o

(k)
n ← o

(k−1)
n for n /∈ S ′.

15: Calculate new individual outputs Y
(k)
o and aggregate output Y (k) from new alloca-

tion o
(k)
n .

16: Update true occupational prices:

P
(k)
o,true = µ

1
ρ
o

(
Y

(k)
o

Y (k)

)− 1
ρ

17: Update effective occupational prices (with damping):

P (k)
o ← λPP (k−1)

o + (1− λP )P
(k)
o,true

18: end while
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ting whenever two episodes overlap. In such cases, they generate two extra episodes for the

overlapping period. For example, consider an episode with start and end dates 01/01/2001

and 12/31/2001. Consider another episode with start and end dates 09/01/2001 and

09/01/2002. Data providers create two additional episodes with start and end dates

09/01/2001 and 12/31/2001, where the information is transferred from the two overlap-

ping episodes, therefore, ending up with 4 episodes instead of the original 2. These episode

splitting artificially boost the transition probabilities from and to the same occupation,

leading biased estimates for the first stage. To eliminate these generated episodes, I only

keep the observations if they contain the mid-year between their start and end dates.

I first keep the observations that belong to two sources, Employee History (BeH) and Ben-

efit Recipient History (LeH). Benefit Recipient History keeps track of people who receive

unemployment benefit or unemployment assistance. Employee History data has the infor-

mation on people with an active employment and it is the one that the most estimation

parameters rely on, other than the transition probabilities. Since I am not taking into ac-

count the unemployment in the post-AI equilibrium, unemployment histories do not alter

the post-AI worker allocation.

There are some other data sources that I drop from the data. Unemployment Benefit

II Recipient History (LHG) starts from 2005, being much later than the 1998 thresh-

old, I drop this data source. Similarly, I also drop Participants-In-Measures History Files

(MTH/XMTH) due to starting from 2000 for MTH and 2005 for XMTH. Jobseeker His-

tories (ASU/XASU). The last data source, Jobseeker Histories (ASU/XASU) starts from

1997 for ASU and from 2005 for XASU. With this data source, however, there are many

episode splittings (split episodes cover half of the observations) and I drop this data source

from the estimation altogether.

There are also some missing episodes for some workers. This prevents transition probabili-

ties from being correctly estimated. Whenever there are such cases, I keep the observations

with the longest no-gap history. If there are at least 2 set of observations with equal length,

then I keep the most recent one as estimation of the more recent periods would be more

important in terms of making predictions about the future.

I also drop one occupation based on the criterion that it spans less than 1/1000th of all the

observations. I merge two occupations with a low count of observations and related titles

“Occupations in product design, artisan craftwork, fine arts and the making of musical

instruments” and “Occupations in the performing arts and entertainment”.
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C.2 Principal Components

Each O*NET SOC occupation is associated with some metrics, classified under “Knowl-

edge”, “Skills”, “Abilities” and “Work Activities”. There are 160 attributes in total. Some

attributes are very similar, and same attributes such as “Mathematics” is a part of both

“Skills” and “Abilities” metrics. Hence, I use the principal components to reduce the very

high dimension of attributes. Table C1 shows the most significant loadings for the first

8 principal components. Figure C1 shows the where the occupations stand in the first 2

principal components space.

Table C1: Most Positive and Negative Loadings for the Principal Components

Principal Component 1

Most Negative Most Positive

Task Loading Task Loading

Manual Dexterity -0.102 Written Expression 0.114

Extent Flexibility -0.101 Written Comprehension 0.114

Handling and Moving Objects -0.100 Writing 0.114

Static Strength -0.099 Reading Comprehension 0.114

Dynamic Strength -0.099 Active Learning 0.114

Principal Component 2

Most Negative Most Positive

Task Loading Task Loading

Working with the Public -0.068 Quality Control Analysis 0.148

Customer and Personal Service -0.053 Mechanical 0.148

Fine Arts -0.052 Inspecting Equipment, Material 0.149

Service Orientation -0.052 Operation Monitoring 0.150

Establishing Interpersonal Relat. -0.042 Physics 0.153

Principal Component 3

Most Negative Most Positive

Task Loading Task Loading

Programming -0.142 Working with the Public 0.154

Interacting With Computers -0.130 Resolving Conflicts and Negotiating 0.155

Computers and Electronics -0.126 Psychology 0.169

Near Vision -0.110 Assisting and Caring for Others 0.180

Engineering and Technology -0.102 Therapy and Counseling 0.196

Principal Component 4

Most Negative Most Positive

Task Loading Task Loading

Sales and Marketing -0.240 Biology 0.139

Management of Material Resources -0.196 Assisting and Caring for Others 0.151

Management of Financial Resources -0.195 Identifying Objects, Actions, and Events 0.158

Continued on next page
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Table C1 – continued from previous page

Most Negative Most Positive

Task Loading Task Loading

Production and Processing -0.178 Medicine and Dentistry 0.170

Selling or Influencing Others -0.178 Documenting/Recording Information 0.242

Principal Component 5

Most Negative Most Positive

Task Loading Task Loading

Fine Arts -0.329 Economics and Accounting 0.113

History and Archeology -0.276 Processing Information 0.113

Thinking Creatively -0.228 Performing Administrative Activities 0.125

Philosophy and Theology -0.209 Number Facility 0.132

Sociology and Anthropology -0.185 Determine Compliance 0.173

Principal Component 6

Most Negative Most Positive

Task Loading Task Loading

Geography -0.321 Monitor Processes, Materials 0.113

Transportation -0.302 Finger Dexterity 0.116

Telecommunications -0.238 Arm-Hand Steadiness 0.118

Law and Government -0.205 Instructing 0.120

Spatial Orientation -0.198 Training and Teaching Others 0.144

Principal Component 7

Most Negative Most Positive

Task Loading Task Loading

Food Production -0.218 Time Sharing 0.185

Biology -0.162 Finger Dexterity 0.190

Estimating the Characteristics of Info. -0.131 Telecommunications 0.234

Dynamic Flexibility -0.114 Clerical 0.238

Geography -0.100 Customer and Personal Service 0.259

Principal Component 8

Most Negative Most Positive

Task Loading Task Loading

Chemistry -0.243 Peripheral Vision 0.117

Biology -0.241 Speech Clarity 0.118

Economics and Accounting -0.240 Installation 0.141

Customer and Personal Service -0.219 Sound Localization 0.148

Sales and Marketing -0.190 Selective Attention 0.152

Note: I use the first 8 principal components in the estimation of the comparative advantage parameters,

which explain more than 80 percent of the total variance in the entire space.
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Figure C1: Occupations in the first Two Principal Components Dimension

Agriculture & Forestry

Gardening

Raw Materials & Ceramics

Wood & Plastic

Printing & Media

Metal Production

Machinery & Automotive
Mechatronics & Electrical

Technical R&D

Textile & Leather

Food Production

Construction Planning

Building Construction

Interior Construction

Building Services

STEM Sciences

Computer Science

Logistics

Vehicle Operations

Security

Cleaning serv.

Sales & Trading

Retail

Tourism & Hospitality

Business Management

Finance & Accounting

Law & Administration

Healthcare

Non−medical healthcare

Education & Social Work

Teaching Social Sciences

Marketing & Media

Design & Arts

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Note: x -axis is for the first principal component and y-axis is for the second

principal component. The principal components are scaled with the variance

of the first principal component, ensuring that all occupations would be in the

interior of the unit circle.

C.3 Crosswalks

There are no direct crosswalks between O*NET SOC-2010 classification and KldB-2010

classification. To match the occupations, I first generate a crosswalk from SOC 2010 to

ISCO-08, then to KldB-2010 classification.

I generate two crosswalks for two cases, (i) automation scores and (ii) principal components.

The idea behind both are the same and as follows.

First, the crosswalk between SOC-2010 and ISCO-08 matches 6-digit SOC-2010 occupa-

tions to 4 digit ISCO-08 occupations. I use the automation scores for the tasks associated

with 6-digit SOC-2010, if the O*NET task statements are available for that 6-digit occu-
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pation. If not, I look at the children occupation in the SOC-2010 classification, and get to

the parent task statements by combining them. If the 6-digit’s children do not exist in the

O*NET task statements, I combine the task statements of the siblings, and use them as if

they are the task statements that belong to the 6-digit occupation.

With regards to the principal components, the procedure is exactly the same, with the

only difference being that instead of combining the task statements, I take simple averages

of the principal components. The simple average could be of the children occupations if

they have attributes listed in the O*NET database, or of the siblings if not.

There are 34 (excluding army occupations and the 2 eliminated occupations due to the

low observation count) occupations in the 2-digit KldB-2010 classification, and there are

around 1000 6-digit occupations in the SOC-2010 classification. Using the information

on the children or siblings in the occupation hierarchy is an exemption, and there are

on average more than 20 6-digit SOC-2010 occupation for each KldB-2010 occupation,

which should make any bias due to missing information on 6-digit SOC-2010 occupation

negligible.

D LLM Prompt

Following is the initial prompt given to Gemini 2.5 Flash model.

Consider the most powerful Google Gemini large language model (LLM). This model can

complete many tasks that can be formulated as having text/audio/video input and text/audio/video

output. This model have access to up-to-date facts from internet or any information or

database that is relevant for the task.

You are a helpful assistant who wants to label the given tasks according to the rubric below.

Equivalent quality means someone reviewing the work would not be able to tell whether a

human completed it on their own or with assistance from the LLM. If you aren’t sure how

to judge the amount of time a task takes, consider whether the tools described exposed the

majority of subtasks associated with the task.

Exposure rubric:

E1 - Direct exposure: Label tasks E1 if direct access to the LLM through an interface alone

can reduce the time it takes to complete the task with equivalent quality by at least half. This

includes tasks that can be reduced to: - Writing and transforming text and code according

to complex instructions, - Providing edits to existing text or code following specifications,

- Writing code that can help perform a task that used to be done by hand, - Translating
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text between languages, - Summarizing documents, - Providing feedback on documents, -

Answering questions about a document, - Generating questions a user might want to ask

about a document, - Writing questions for an interview or assessment, - Prepare training

materials based on general knowledge, - Inform anyone of any information via written or

spoken media.

E0 - No exposure: Label tasks E0 if none of the above clearly decrease the time it takes

for an experienced worker to complete the task with high quality by at least half. Some

examples: - If a task requires a high degree of human interaction (for example, in-person

demonstrations) then it should be classified as E0. - If a task requires precise measurements

then it should be classified as E0. - If a task requires any use of a hand or walking then

it should be classified as E0. - LLM cannot make any decisions that might impact human

livelihood (e.g. hiring, grading, etc.). If any part of the task involves collecting inputs

to make a final decision (as opposed to analyzing data to inform a decision or make a

recommendation) then it should be classified as E0. The LLM can make recommendations.

The LLM cannot do anything that legally requires a human to perform the task. - If there

is existing technology not powered by an LLM that is commonly used and can complete

the task then you should mark the task E0 if using an LLM or LLM-powered tool will not

further reduce the time to complete the task. When in doubt, you should default to E0.

Read the following tasks that belong to an occupation. Then do the following: 1. Reason

very briefly step by step to decide which of the labels (E0 or E1) from the exposure rubric

you were given applies to the task’s exposure to LLM. Report. 2. Give an explanation for

which label applies and report the label that you think fits best. Report only the label that

you determined for the task. 3: 3. Given the amount of speculation required in step 1,

describe your certainty about the estimate – either high, moderate, or low.

Direct or coordinate an organization’s financial or budget activities to fund operations,

maximize investments, or increase efficiency.

LLM Response: The task ’Direct or coordinate an organization’s financial or budget activ-

ities to fund operations, maximize investments, or increase efficiency’ involves high-level

strategic decision-making, leadership, and ultimate responsibility for financial outcomes.

These decisions directly impact the organization’s stability, employee livelihoods, and over-

all business operations. The rubric explicitly states: ’LLM cannot make any decisions that

might impact human livelihood (e.g. hiring, grading, etc.). If any part of the task involves

collecting inputs to make a final decision (as opposed to analyzing data to inform a deci-

sion or make a recommendation) then it should be classified as E0.’ While an LLM can

analyze financial data, generate reports, draft proposals, or make recommendations (which
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are E1 activities), it cannot ’direct or coordinate’ by making the final, responsible decisions

or taking on the leadership role required for such a task. Furthermore, this task requires a

high degree of human interaction, negotiation, and strategic judgment that an LLM cannot

replicate with equivalent quality. Therefore, the core of the task is not exposed to LLM

capabilities in a way that would reduce completion time by half with equivalent quality. E0

High

...

...

...

I use the “chat” feature in the API, which allows me to respond to every output by the

next task description. This allows me to save fees and time by not having to input the

initial prompt every time.
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