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Abstract

There are many predictions regarding occupational Al exposure, but existing mea-
sures typically fail to account for worker reallocation and its resulting economic
impacts. Hence, exposure measures do not necessarily translate into economic im-
pact. An exposed worker can mitigate wage losses by switching to the next best
occupation. On the other hand, this switch creates new competition for the in-
cumbent workers in the next-best occupation. To model these reallocation effects
and their impact on equilibrium wages, I build a framework where production can
be performed by human workers or by AI technology. I then estimate a model of
occupation choice where workers are heterogeneous in terms of their comparative
advantage across occupations. Using automation scores, I simulate an Al shock to
occupational prices, and then solve for the equilibrium after the workers reallocate.
Given that Al shock is uneven across occupations, results suggest that generalists,
i.e. workers with uniform comparative advantages fare better, whereas specialists

experience worse outcomes.
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1 Introduction

Automation technologies had significant impact on the wage structure in the United States
(Acemoglu and Restrepo (2022)). Al technologies that can potentially automate many
tasks may have significant implications for the labor market (Trammell and Korinek (2023),
McElheran et al. (2024)), especially considering the recent improvements in these tech-
nologies and the widening use cases (Bick, Blandin, and Deming (2024) and Handa et al.
(2025)). There are several studies so far that measure Al exposure scores for occupations
(among them, Brynjolfsson, Mitchell, and Rock (2018), Webb (2020), Felten, Raj, and
Seamans (2018), Eloundou et al. (2023), and Handa et al. (2025)). However, the infor-
mation content of these measures may be lacking in terms of understanding the welfare
impacts, since these studies do not take into account the worker reallocation resulting from
the Al technologies shifting prices and labor demand. This general equilibrium effects can
mitigate the income loss for those who are replaced. On the other hand, the GE effects
are likely to be adverse for those who are not directly exposed to Al, but face higher

competition in the labor market due to worker reallocation.

With this concern in mind, I study the impact of Al, specifically, LLM technologies, on the
wage distribution across workers and the employment distribution across the occupations.
I build a framework where workers can reallocate across occupations as a result of prices
changing due to the Al technologies. There are two main ingredients of the general equi-
librium. First one is the AI automation shock, which I measure in the form of automation
scores. To generate the scores, I follow Eloundou et al. (2023) and Eisfeldt et al. (2023) by
asking an LLM to assess if a task associated with an occupation can be automated given

the description of the task.

I assume that the smallest unit of production are tasks, as common in the automation liter-
ature (Acemoglu and Restrepo (2022), Acemoglu and Restrepo (2018) and Acemoglu, Au-
tor, et al. (2022) and Humlum (2021)). Some of the tasks can be automated, in which case
they are entirely performed by the Al technologies. Workers perform the non-automated
tasks, and their productivity increase when some of the tasks they used to perform gets

automated.

The other ingredient is understanding how workers choose their occupations and what
determines their wage. To understand this, I set up a labor supply framework where
workers face a dynamic discrete choice problem. Every period, they make a decision
on staying in their current occupation or switching to a different occupation subject to

switching costs. Wages are functions of some observables and the unobserved comparative



advantage. Comparative advantage is allowed to differ across workers and occupations,
hence two workers of the same observed characteristics can make different occupation

choices even in the absence of any switching costs.

I estimate the comparative advantage vectors using the wage regression. Identification of
the comparative advantage vectors comes from from occupation-to-occupation transitions,
which allows me to assess worker’s productivity across different occupations. The compar-
ative advantage of a worker in occupation o would be roughly their wage in occupation
o compared to the average wage in that occupation, averaged over the years. However,
this identification method fails because no worker has an employment history across all
occupations. To overcome this, I assume that there are finite worker types, where each
type represents a latent group of workers who share a similar, unobserved comparative ad-
vantage vector. These types are not pre-defined but are estimated directly from the data.
This way, the employment history of the set of workers who belong to the same type spans

the set of all occupations, and the comparative advantage vector can be identified.

2 simultaneously is not a com-

Estimation of the type probabilities’ and the wage regression
putationally feasible task. Therefore, I use an Expectation-Maximization algorithm which
updates the type probabilities and wage regression sequentially, and eventually converging
to the maximum. Specifically, I follow Arcidiacono and Miller (2011) which lets me esti-
mate the wage regression parameters with unknown types first, and the switching costs in

the next stage.

In order to estimate the switching costs, I utilize the relationship between the transition
probabilities, which are recovered during the first stage of the estimation, value functions
and the switching costs. Taking the difference of the value function of two workers who
start and end up in the same occupations®, the same relationship can be expressed in terms
of the transition probabilities and the wage differential between the two workers, both of
which are estimated during the first stage of the estimation, and switching costs, which

can be estimated using the first two estimated variables.

For estimation, I use an administrative German panel data which tracks the employment

history of workers between years 1998-2021%. This is a panel data that contains the em-

In the actual estimation process, each worker has a strictly positive probability of being any type due
to the way the probabilities are constructed to maximize the likelihood.

2Conditional choice probabilities are also estimated as part of the likelihood. See Section B for addi-
tional details.

3This is due to the finite dependence property which allows differencing out the lifetime value functions

(Arcidiacono and Miller (2011))
4While the raw data covers earlier years, I use the data starting 1998. For a discussion on the data



ployment status, occupational choice and wages of the 2% randomly selected sample of all
individuals in Germany. The data includes the occupations and earnings history of work-
ers along with some individual characteristics such as age and schooling. Employing this
administrative data with many occupation to occupation transitions allow me to identify

the comparative advantage parameters®.

Having estimates of the wage equation parameters, I can compute counterfactual wages
given any initial price shock, or under any worker reallocation. AI technologies make
the workers more productive by having them allocate the time spent on the automated
tasks to the non-automated tasks. This additional productivity causes wages to increase,
while on the other hand reducing the price of the exposed occupations due to increased
quantity. In essence, Al technologies are a price shock as it distorts the occupation prices,
and this triggers a worker reallocation. With the estimates of the type probabilities and
the wage regression paramaters, I calculate the counterfactual wages, and the occupation
choice which offers the highest wage. Then I solve for the new steady state where the Al

technologies automate certain tasks.

I contribute to the automation literature, mainly to those concerning the AI automa-
tion, including the aforementioned works such as Brynjolfsson, Mitchell, and Rock (2018),
Eloundou et al. (2023), Felten, Raj, and Seamans (2018) and Webb (2020), Mckinsey &
Company (2023), Humlum and Vestergaard (2024) Handa et al. (2025), by studying the
effects of the Al automation in a general equilibrium that incorporates worker reallocation.
While the exposure scores are informative, there is no guaranteed one-to-one relationship
between the Al automation exposure scores and the occupational prices or wages of the
workers in that occupation. For example, if highly exposed translators have a positive
comparative advantage only in the occupation “translators”, then they might be adversely
affected by the Al automation. On the other hand, if another highly exposed group,
computer scientists, have a comparative advantage in an unaffected occupation, such as
engineering, then they will move to that occupation and mitigate the adverse effects of the

Al automation.

This study also adds to the previous work that study the general equilibrium effects of the
automation shocks using a reduced form analysis, such as Acemoglu and Restrepo (2022).
In Acemoglu and Restrepo (2022), authors estimate a propagation matrix of the automa-
tion shock that measures the propagation of an automation shock to a set of tasks to the

other tasks. The contribution of this study on this strand of literature is that I am struc-

cleaning procedure, please see Section 4
5Since most granular task descriptions and AI exposure metrics are tied to the US O*NET classification,

a key step in my analysis involves mapping the German occupational codes to their O*NET equivalents.



turally estimating this propagation matrix, which depends on the primitives of the model
environment and worker characteristics and comparative advantage vectors. A reduced
form approach is not feasible for the case of Al automation shock since Al technologies
are in adoption phase, however, a structural approach also gives me flexibility in terms of

measuring the labor market responses to any degree of Al automation shock.

I find that all-rounder workers with no very distinct comparative advantage across occu-
pations are able to allocate more optimally against the Al shock. Al shock hits the occu-
pations in significantly varying degrees. Workers are usually employed in the occupations
they have a positive comparative advantage in. Specialist workers, that is, workers with
distinct comparative advantage in one or a few occupations find it more costly to switch
to another occupation, since they would lose their comparative advantage upon switching.
On the other hand, all-rounders, workers with no distinct comparative advantage in any
occupation do not face this opportunity cost, and switching to another occupation does not
induce a large opportunity cost for them. As such, against the Al shock, the all-rounders

are more positively affected compared to the specialists.

In a parallel work, Smeets, Tian, and Traiberman (n.d.) studies the Al shock using Den-
mark data. They account for the worker reallocation as well, using a dynamic discrete
choice model to uncover comparative advantage. They calibrate the Al shock using the
automation scores calculated by Eloundou et al. (2023). They find that the lower-income
workers are worse-off in absolute terms, whereas middle income workers seem to benefit
the most from the AI shock®. There are two distinct differences between the assumptions
of the two studies. First, they use a different exposure measure than what I use for this
study. Second, in the supply side they assume sectors that host occupations, and they cali-
brate the elasticity of substitution between sectoral outputs to 0.2 following Atalay (2017).
Third, the way they calibrate the Al shock may decrease the productivity in some sectors.
The large complementarity between sectors, also implying a complementarity between the
occupations is likely the driver of the outcomes between the two models. Calibration of
the AI shock would mostly explain the difference between the average wages between the

pre and post-Al shocks equilibrium.

In Section 2, I lay out the production hierarchy and the production technologies. Also in
this section, I provide the equilibrium conditions; market clearing conditions for both the
goods and the labor market, optimal consumption rules for household and profit maximiza-

tion problem for the firms. Following that, I describe the labor supply side and the workers’

6] compare the results in this paper with the no-field-reallocation setup of Smeets, Tian, and Traiber-

man (n.d.) since they are the most comparable models.



dynamic choice problem. In Section 3, I provide details about the estimation of the wage
parameters and the type probabilities. Next, I describe the second stage where I estimate
the switching costs utilizing the first stage estimates. In Section 4, I provide relevant facts
about the data including occupational transition rates and details for the construction of
the panel that I use for the estimation. Following this, I describe the matching procedure
from the German occupation classification (K1dB-2010) to the US O*NET SOC classifica-
tion, where I get some occupation metrics from. Furthermore, this section also covers the
process for generating the Al automation scores. In Section 5, I describe how I numerically
construct the post-Al equilibrium. This relies on shifting the workers between occupations
such that their wages are maximized. Then I discuss the estimation results including the
wage distribution, employment distribution along with some important parameters such

as comparative advantage vectors.

2 Theory

2.1 Production

The economy is populated by human workers” normalized to unity. Time is discrete. Every
period, each worker chooses among O different occupations to work. FEach occupation
consists of a series of tasks, where tasks can either be performed by human workers or the

AT technology.

AT technology is perfect substitute for human labor; and it has zero rental cost. Al tech-
nology is infinitely more productive than human workers in the tasks it can perform.
Therefore, human workers create a bottleneck in the production in the sense that the Al
technology can be scaled infinitely whereas the human worker output is costly to scale.
Human worker output is the sole determinant of the output of the occupations, whereas

the tasks that are performed by the Al technology has no effect on output.

To solidify the idea, consider the occupation of translator. Suppose the Al technology
performs the translation and the only task to be performed by human workers is to review
the translation. Then, the translator output is entirely determined by how fast a human

translator can review the translation of the Al technology®.

"Throughout the paper I use workers and human workers interchangeably, as well as AI, AT technologies

and automation technology.
8 Another example would be a researcher doing a literature review. 50 years ago this task would involve

going to a library and skimming through journals to find relevant studies. Now, this task only involves the
skimming through the literature and not the going to the library part for most cases. Hence, the researcher

should be able to allocate the time from commuting to the library to searching through the internet, and



The production technology for occupation o at time ¢ is denoted by Y,; and is assumed to
have the following function form.

_0_
-1

Ya=M, | 3 v (1)

TETL\TA
where 7, denotes the set of tasks associated with occupation o and 74 denotes the set of
tasks that are automated. M, > 1 is a productivity multiplier due to time reallocation of
human workers from the automated tasks to the task they are performing. Denoting the
share of automated tasks in occupation o by m,, the formula productivity multiplier is as

follows.

1
M, =
1—m,

(2)

Production in task 7 is solely determined by human workers’ productivity.
Y= Z Znot (3>
nELot
where L,; is the set of workers in occupation o at time ¢ and z,0t denotes the productivity

of worker n in occupation o at time t.

Finally, the consumption basket of the households is a CES combination of the consumption
of the individual occupation outputs.

0 L\
Cur = | D 1oty (4)
o=1

Here, 1, denotes the occupation demand shifter for the occupation o output. Denoting the
time t aggregate price level as P, and the occupation o price level as P,;, and along with

the market clearing conditions, optimal consumption dictates

Pot -’
Yor = poYe | —- 5
=i () )

Every occupation is a perfectly competitive market, and the wage of a worker is equal to

the marginal productivity of the worker times the price of the occupation output.
Wnt = Mo X Pons X Znopst (6)

where o, is the occupation choice of worker n at time ¢.

the output of this task is solely determined by how productive the researcher is in searching through the

web for relevant studies.



2.2 Labor Supply

Having set up the labor demand side, this section provides details about the labor supply.
Each period, workers face a problem where they have to choose between staying in their
current occupation or switching to another occupation. They are subject to switching costs
upon switching occupations, and also switching cost shocks. There is no savings, that is,
everyone in the economy is hand-to-mouth consumers. Workers maximize their expected

lifetime utility given as

T

Eo Z Btu(cnt) (7>

t=0

The flow utility of worker n who is working in occupation o,; at time ¢ is as follows.

u(cnt) = Wpt + Sn(fntv Ontlontfly wnt) (8>

where S, (+) denotes the cost associated with switching from occupation 0,1 t0 0. Wy de-
notes the worker characteristics that the switching costs depend on. For ease of expression,

switching cost function can be separated into two terms as follows.

Sn(gnta Ont|0nt—1) = Sn(ont|0nt—17 wnt) + fontom_lnt (9)

so that the deterministic part s,(0nt|0nt—1,wn:) and the stochastic part &, ,o,, ,nt are sep-
arated. For convenience, replace o,; with o' and 0,;_; with o. Under certain conditions,

worker n’s problem can be written as a Bellman equation as follows.
Vt(Ola hm Ht) = H(I)%X {Etwno’t + Sn(0/|07 wnt) + fo'ont + 5]Etvt+1(0”; ht+17 Ht+1)} (10)

where h; is the set of individual state and H; is the set of aggregate state variables. v () is
the value function associated with choosing a specific occupation at time ¢ whereas V; 1(+)
is the value function associated with optimal occupation choice from time ¢ 4+ 1 and on.
There is an expectation term on w, since I assume the wage shocks are unobserved before
making the occupation choice. Switching cost shocks, on the other hand, are observed
before the occupation choice. I also assume that the switching cost shocks follow Type
I extreme value distribution (¢ ~ F'(0,7)) with scale parameter equal to v and location

parameter equal to 0. This yields the following recursive formulation (Rust (1987)).
Ut<0/7 ht7 Ht7 wnt) :Etwno’t + Sn<0/|07 Wnt) + go’ont

+ y/flogZexp (gvtﬂ(o', his1, Ht+1,§))dF(§) + Byct (11)



where ¢° is the Euler-Mascheroni constant. Time t+1 unconditional value function (V;41(+))
can be manipulated to define a relationship between the value functions and the transition

probabilities.

]Et‘/z€+1(0/7 hiyi, Hepr, Wne1) =E [Ut+1(01, hiv1, Hi1, Wntt,§)

—ylogm (0/’0/7 P, Hepr, Wniy) } + yc° (12)

This representation will be critical in estimation of the switching costs as it relates the value
function to the conditional choice probabilities. Given two different workers who end up
at the same occupation with the same individual states, the lifetime value differential can
be reduced to utility differentials between the two workers. Utility differentials are linear
functions of expected wages and switching costs. Conditional choice probabilities and the
expected wages can be recovered from the data. This allows me to estimate switching costs
via a regression. More details on the mathematical identity between the choice (transition)

probabilities, expected wages and the switching costs can be found in Section 3.

2.3 State Variables

h; represents the individual state variables, age, schooling category and the unobserved
productivity parameters for the worker. In practice, estimating productivity parameters
for each worker is not feasible because (i) not all of the workers have a work history across
all the occupations and (ii) even if they did, they need to have worked at least two periods
for each occupation for identification of the productivity parameters. Instead, I assume
that each worker belongs to one of the finite types ¢ € {1,...,I}. This assumption resolves
both problems mentioned before because all types are going to exhibit work histories across
all the occupations. Due to the nature of the estimation procedure which will be explained
in Section 3, all workers have a strictly positive probability of being any type. Hence, this
rules out the concern where very little number of workers belonging to a type and causing
identification problems. H;, on the other hand, represents the only aggregate state variable
which are the occupational output prices. Workers can perfectly forecast the individual
state variables, age and the time-invariant type, since they are non-stochastic. Imposing
a forecasting method for the aggregate state (occupational prices) is not necessary for the
estimation purposes, since I am following Arcidiacono and Miller (2011) which allows me

to work with empirical transition rates.

Wage of worker n is equal to worker n’s productivity in occupation o multiplied by the

price of the occupation worker n employed at.
Wnt = Pons X Znonst

9



where z,.; is the productivity of worker n in occupation o at time t. Productivity of a

worker is, in logarithmic form, a linear function of their individual state variables.
108 Zno,,t = B1 X Age,,, + BaAge?, + B3Schooling + AAimyon, T OoEnt (13)

where AA;, denotes the absolute advantage of worker type i in occupation o. However,
absolute advantage parameters cannot be identified because there is a perfect collinearity
between them and the occupational prices (p,). To see this, consider two economies where
every worker is twice productive in the first economy compared to other, whereas the oc-
cupational prices are equal to the half of those in the second economy. Then, the average
wages would be equal in both economies. For this reason, productivity parameters can be
estimated only up to a difference from a benchmark type, which is essentially the compar-
ative advantage. Hence, I estimate this equation setting type 1 as the benchmark type. €,
is the idiosyncratic wage shock which is unobserved before making the occupation choice.
It is assumed to be independent of all state variables, individual or aggregate. o, regulates

the standard deviation of the wage shocks, which depends on the occupation.

2.4 Equilibrium

This section lays out the equilibrium conditions for the post-Al equilibrium economy. For

the pre-Al automation economy the exact conditions apply except 74 = ) or M, = 1Vo €
{1,...,0}.

Workers maximize their lifetime utility by choosing an occupation in a forward looking
manner. The forward looking behavior is both due to the switching costs and also the
evolving occupational prices. Because the switches are costly, a worker might wait until it
is the right time to switch occupations, that is, until they are hit with a favorable switching
cost shock. I do not consider any functional form for forecasting the occupational prices

since the estimation procedure does not require so.

T

max E Z u(cnt) (14)
Cnt,Ont =0

S. to cpr = Wy + Sn(fnb Ont‘Ont71> (15>

Each individual must be working in the occupation that offers the highest expected dis-

counted lifetime utility. Mathematically
E.V (o) > EV;*(o') Vo' €{1,...,0} (16)

where V;"(0) denotes the discounted lifetime utility given the occupation choice o for worker

n at time t.

10



Firms combine task outputs (Y;;) and produce occupational outputs (Y,;). Each occupation
is a perfectly competitive market. Individual behavior of the firms are irrelevant since I

can ignore them and work on occupation level variables to establish the equilibrium.

There is no rental cost for the Al technology. With free entry condition, all firms make 0
profit. Therefore the marginal cost must be equal to the output price for all firms in all
occupations.

1 Wt

Mo Znot

Pot = Vn e Lot (17)

In the equilibrium, there may be more than one type of labor working within an occupation,

which may result with more than one wage per firm.

Market clearing condition for the labor market is

o)
> Ly=1, Wt (18)
o=1
and for the goods market

Cot = Yo, Vo,t (19)

3 Estimation

Without the unobserved types, the estimation procedure would be running two sets of
regressions to estimate the income regression and switching cost parameters that maximize
the likelihood. Due to unknown worker type probabilities, one must also estimate the vector
of type probabilities for each worker. Type probabilities are estimated such that workers’
history is aligned with being that type. For example, suppose the wage regression for the
type 1 workers indicate a positive comparative advantage for a particular occupation (call
it occupation 1) and a negative comparative advantage for another occupation occupation
2). Consider a worker who earns more than average controlling for their observables in
occupation 1 (see Figure 2). Suppose this worker also earn less than average in occupation
2, controlling for the observables. Then, this worker is likely to have a positive comparative
advantage in occupation 1 and a negative comparative advantage in occupation 2. It follows
that the worker must be attached a relatively high probability of being type 1 compared
to the average type 1 probability of population.

This is a typical problem that is estimated via an Expectation-Maximization (EM) algo-
rithm. The idea behind the EM algorithm is maximizing the total likelihood in two steps.

First step involves maximizing the log-likelihood given a type probability vector for each

11



Figure 1: Visualized Estimation Procedure
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worker. Next step involves updating the type probabilities via Bayesian update. These two
steps are repeated until the likelihood converges. I perform the EM algorithm for the first
stage to calculate the wage regression parameters, occupational prices, type probabilities

and transition matrices.

Switching costs can be recovered having obtained the estimates from the first stage. I
provide additional details about the second stage of the regression where the switching

costs are estimated in Section 3.2.

First, let us define the object that is to be maximized. The log-likelihood for a single

observation conditional on the worker being type ¢ as follows

Lnt\i = f(wnonttlwnh type = Z) X W(Ontlont—la Wnt, type - 7’) (20)

where f(-) is the Gaussian distribution and 7(-) denotes the transition probability from
last period’s occupation to this period’s. w,; denotes the vector of observables for worker n
at time ¢, that are age and schooling. Likelihood contribution due to a worker is then

T

Ln|z - H f(wnomt|wnta type = Z) X 7T(Ont|0nt‘—17(")mh type - Z) (21>
t=1

Unconditional likelihood is the integral (in this case, the weighted sum) of the individual
likelihood contributions with respect to the type probabilities. The total log-likelihood is

therefore

[f(wnontt|wnt7 type = 2) X ﬂ-(ontlont*h Wnit, type = Z)] (22>

T
=1

N I
n=1 =1

where ¢,; denotes the probability attached to worker n being type 7. EM algorithm allows

t

estimating ¢,; and the conditional likelihood in two different stages instead of tackling a
very high dimensional problem. However, 7(-) depends on both the first and the second
stage parameters, as transition probabilities depend on the comparative advantage vectors,
as well as the switching cost parameters and shocks. Therefore, maximization of this like-
lihood involves finding a fixed point for the the contemporaneously estimated parameters
for the transition probabilities and wage regression as well as the switching cost parameters
estimated in sequence’. Doing this at every iteration of the EM algorithm is computation-
ally infeasible. Furthermore, I would need to impose additional structure on the model by

defining forecasting rules for the workers for the aggregate states'C.

9Since this particular estimation is a finite dynamic programming problem, one needs to perform a

backward recursion to solve for the transition probabilities
10Tn case of rational expectations one would have to find another fixed point for the forecasting rule

and the actual realizations for the aggregate state variable.

13



To overcome this problem, I follow (Arcidiacono and Miller, 2011) for the estimation, which
allows me to treat the transition probabilities as something to be empirically estimated
from the data, instead of calculating as part of the fixed point or the recursive problem.
Following sections describe in detail the estimation process, where it is also visualized in

Figure 1.

3.1 First Stage

The EM algorithm starts off by initiating type probability vectors for all workers. The
only hard rule for the initial type probabilities is that they must not be perfectly uniform.
If the initial type probabilities are left very close to uniform then the maximization step
yields the same parameters for every type and thus the EM algorithm cannot converge.
There has to be some diversity between the type vectors so that the maximization step
of the EM algorithm can generate different sets of parameters for each type, and start to

converge from there.

I divide the occupations into 4 categories, based on a rough measure of how similar their
names are. For each worker, I assign initial type probabilities depending on the share of
their occupation history in each occupation category. Even when a worker spent all their
career in one occupation group, the resulting initial type probabilities indicate a some

nudge towards one type and are not very definitive.

3.1.1 Maximization Step

Maximization step involves estimating a weighted regression for the wage regression, and
another weighted regression for generating empirical transition probabilities. Occupational
prices are estimated as part of the wage regression. Occupational prices do not depend on
worker types, and a the way to ensure that is to estimate the wage regression for all types
in a single equation, where the occupational prices are not differentiated with respect to

worker types.

I use 34 occupations and 4 types, which requires estimating 34 x 3 comparative advantage
parameters. While technically feasible, some occupations are similar in the skills they
require'!. Instead of estimating 34 productivity variables for each type, I reduce the di-
mension in the occupation space by generating a lower-dimensional skills vector?. This

idea is similar to generating a distance measure between the tasks. If two occupations are

HFor example “Occupations in plastic-making and -processing, and wood-working and processing” and

“Occupations in production and processing of raw materials, glass- and ceramic-making and processing”.
12Smeets, Tian, and Traiberman (n.d.) uses the same dimension reduction approach.

14



similar, then workers who have comparative advantage in occupation are likely to have

comparative advantage in the other occupation as well.

13

To do so, I use quantified occupation characteristics from O*NET database, such as “im-
portance” of mathematics, reading comprehension, negotiation, etc. Then I use the first 8
principal components of this very high-dimensional information'. Thanks to this dimen-
sion reduction I have to estimate 3 X 8 comparative advantage parameters, instead of 3 x 34

comparative advantage parameters.
108 Wino,,t = Pot + 1 X Age,, + BaAge?, + BsSchooling + 1{i # 131,84 + Tocne  (23)

where I, represents the skill shifters (first 8 principal components) and ,BZC 4 represents the
skill vector corresponding to the first 8 principal components. This regression is estiamted
via weighted OLS, where the estimation matrix is stacked for each type, and ¢,; enter as

observation weights.

For estimating the transition probabilities, Arcidiacono and Miller, 2011 suggests using the

empirical distribution of the transitions. Specifically, a bin estimator as follows

Zfzvzl Qniﬂ(hnt = ho, 0pt = 02, hpp—1 = h1,0pi-1 = 01)
ZnNzl Gnil(hhpi—1 = hy,0p-1 = 04

7(hg, 02|h1,01) = (24)
Where h are individual state variables, age and schooling. In practice, this bin estimator
is not a reliable measure because partitioning the data based on individual state variables
and occupation result with very few observations for some (age, schooling and occupation)
triplets. Traiberman (2019) faces the same problem and uses a linear probability model
to approximate the bin estimator while Ransom (2022) uses a logit estimator. I find that
both approaches lead to numerical instabilities in my case. With an LPM model, numerical
instability arises because the predicted probabilities are not bound between 0 and 1. With
the logit model, some estimations do not converge given very few observations for some
transitions. Therefore, I rely on an L2-regularized (ridge) logit to keep the parameter
estimates from taking unreasonable values when there are only a few observations for a

transition'*.

13First 8 principal components explain 82.5% of the variance in the entire information matrix. More

information on the construction of the principal components can be found in Section C.2.
141t is also possible to assign some default parameters when there are very few observations for any

transition. This does not work in practice because the logit estimator may fail to converge with, for
example, 10 transitions whereas it may converge with a single transition only. As such, the cases of failed
convergence are not characterized by an observation threshold. Hence, assigning default large negative
values for the failed cases creates a negative bias for the transitions with enough number of observations

yet where the logit estimator does not converge.
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3.1.2 Expectation Step

In this step, type probabilities are updated by Bayesian updating. The intuition behind
the updating procedure is as follows. Consider an EM estimation with two types. There
are two set of parameters estimated for each type. If a worker’s likelihood contribution can
be better explained with a particular set of parameters belonging to a certain type, than
the probability that the person is that type increases. Formally, the updating formula is

as follows.

" 2 Lnjir g™ (@)

relates the distribution of being type ¢ to the observables at time ¢ = 1

where q(i|w®*)

(Arcidiacono and Miller (2011)). This allows me to take into account that the initial
individual state variables, age and schooling, might be reflective of the unobserved type.
q(i,w
change at every iteration.

%) is updated at every iteration of the EM algorithm since the type probabilities

3.1.3 Identification of Worker Types

Identification of types relies on two observables, wages and transitions. Consider a group
of workers who earn more than average in a certain occupation, after controlling for their
observable characteristics such as age and schooling. This implies that their unobservable
comparative advantage for that occupation is likely to be positive. These group of workers
are likely to be the same type if they exhibit similar wage patterns in other occupations

as well (see Figure 2).

Transitions also determine the worker types. Consider two types of workers, high and
low skill. High skill occupations are mostly populated by high skill workers, whereas low
skill jobs present a bit more diversity in terms of skill-mix. Transition histories for these
two types of workers will look different in the sense that while the high skill workers can
transition between low and high skill occupations, low skill workers can only transition

between the low skill occupations (see Figure 3)

Identification of a price of an occupation also relies on the same conditions for the iden-
tification of the types working in that occupation. To see when the identification of an
occupation price may not be possible, consider a type of workers are only employed in
a single occupation. Because this type’s comparative advantage cannot be identified due
to not being employed in any other occupation, the price of the occupation cannot be
identified in the wage equation as well. The estimates for occupation prices and the com-

parative advantage parameters are more robust when workers (especially of different types)
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Figure 2: Worker Types and Comparative Advantage (CA).
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]
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Low Earners
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Note: A group of workers (red dots) who earn more than average in Occupa-
tion 1 also earn less than average in Occupation 2, suggesting they belong to

a specific unobserved type.

Figure 3: Worker Types and Transitions

High Skill Workers
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Occupations

High Skill

Occupations

Low Skill Workers
Note: High skill workers (blue) can transition between both high and low

skill occupations. Low skill workers (red) are restricted to transitions within
low skill occupations. The transition histories are likely to separate this two

groups of workers into different types.
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transition between different occupations.

3.2 Second Stage

Estimation of the switching costs relies on exploiting two occupation transition paths that
start at the same occupation (o) and ends at another occupation (both at o). At the
end of this transition paths, continuation values are the same for two workers with the
same individual states. This allows writing down the transition probabilities in Eq. B.3 in
terms of flow utilities and switching costs (for the full derivation of the conditional choice

probabilities see Section B.3).

log (Wt(0/|07 htaHtvwnt)) +Blog (Wt+1(0//|0/7 hitr, Ht+luwnt+1>)
7Tt(0|0> htaHtvwnt) 7Tt+1(0 ‘07 Pyt Ht+17wnt+1)

1 1-8 1

= _Et [wno’t - wnot] + Sn(0/|07 wnt) + ; [go’ont - go’ont+1]

gl
(26)

Transition probabilities and expected wage differentials are recovered in the first stage.
Following the first stage, I estimate this equation via OLS where the discount factor g =
0.96.

Estimation of the switching costs reliably requires a sufficient amount of transition between
each occupation pair. This is not the case for each occupation pair, and to overcome that,
I follow Ransom (2022) and Traiberman (2019), and define a measure of distance between
two occupations, and assume that the switching cost is a linear function of distance along

with a fixed cost for the origin equation. This transformation can be shown as follows.
$n(0'|0, wnt) = af + ayd(o,0) (27)

Ransom (2022) estimates switching costs between locations, which has a natural measure
for distance. Traiberman (2019) uses the principal components to generate Mahalanobis
measure, which scales down the principal components as well as taking into account the
correlation between the principal components. I use the principal component vectors associ-
ated with each occupation and then measure the Euclidean distance between the associated
vectors with every occupation. Euclidean distance does not scale the variance of the prin-
cipal components. I find this more informative since principal components are ordered in
terms of explaining the total variance hence the information content. Accordingly, a prin-
cipal component of higher variance will have a larger weight with the Fuclidean distance

measure.
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4 Data

4.1 Labor Panel

I use an administrative German data, Sample of Integrated Labour Market Biographies,
which contains a 2 percent random sample from all individuals in Germany (Graf et al.
(2023)). The data covers the period between 1975 and 2021, and has information on the
ID, age, employment status, occupation, schooling, gender and income. Some information
is anonymized further or provided in restricted detail. Wages are rounded to the nearest
integer. For schooling, I define two categories, university education and all the other
lower degrees since the data doesn’t provide a fine grained information on the schooling

variable.

I use the data from 1998 and onwards'®. The occupation classification for the data is KIdB
2010. While the data reported from after November 2011 uses KIdB2010, the data reported
before uses KIdB 1998 classification, which are converted to KIdB 2010 classification by
the data provider.

I use O*NET database to get the task descriptions and the information on attributes
such as skills and knowledge relevant for the tasks. O*NET database uses SOC 2019
classification, however, there are no direct crosswalks between SOC 2019 and KldB 2010
classifications. To this end, I use ISCO-08 occupation classification and first transcode SOC

2019 occupations to ISCO-08 classification and from there to K1dB 2010 classification.

For generating the principal components, I follow Traiberman (2019) use “Knowledge”,
“Skills”, “Work Activities” and “Abilities” attributes from O*NET database. For each
attribute, there are two measures, “Importance” and “Level”. I follow Firpo, Fortin, and

Lemieux (2011) and assign 2/3 and 1/3 geometric weights, respectively, to generate a single

15 After 1998 the employers started reporting earnings below some threshold. While the effect this
change on the estimation is probably negligible, another reason I opted to start from 1998 is mainly due
to memory limitations on the server that I am running the estimation. I estimate the wage regression for
4 types at the same time to estimate a single set of prices, and this requires stacking 4 wage regression
matrix. Hence, the memory that the estimation requires roughly quadrupled. In addition to this, some
data operations cannot be performed in-place, resulting in additional large matrices being created and
increasing the RAM requirement. While there are some methods in R to bypass RAM limitations by using
an SQL database or other methods that work over the hard disk instead of RAM, almost none of the
options are usable due to the restrictions on the machine that I run the estimation on. For this reason, I
further limit the sample size by randomly selecting some worker IDs after the data cleaning process. Even
then, I have to rely on memory-efficient estimation processes such as incremental QR decomposition and

using sparse matrices.
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measure. This leaves me with 160 attributes for each occupation, for which I apply principal
components dimension reduction to generate 8 new attributes. In Appendix section C, I

detail the most important attributes for the first 8 principal components.

4.2 Al Exposure Scores

To compute the post-Al general equilibrium I need binary exposure scores for each task
in every occupation. To achieve this, I follow Eloundou et al. (2023) and Eisfeldt et al.
(2023) and generate the scores using an LLM. Specifically, I provide the LLM a task
description and provide clear instructions to determine whether it can be automated by
LLM technologies or not. I do this for every task description under all occupations in
the O*NET database, and calculate the exposure scores by taking simple average across

task automation scores'® 1718

Then, using relevant crosswalks, I aggregate the scores
generated by the LLM to KIdB-2010 2-digit level occupations. Exposure scores for the

2-digit K1dB-2010 occupations are in Table A2.

5 Results

First I present a discussion of the estimation results; wage parameters, including the com-
parative advantage vectors, type distributions and switching costs. These are not equi-
librium dependent objects, instead they are inherent attributes for the workers and the
environment. Then I move onto the post-Al equilibrium where I discuss the wage changes

and the employment shifts between occupations.

Figure 1 shows the comparative advantage of the three types in all occupation groups'® in
comparison to the first type. Hence, the first type has 0 comparative advantage across all

occupations.

Type 1 workers has a comparative advantage in Business, Law & Administrative occupa-

tions along with STEM and Commerce & Logistics occupation groups. Type 2 and type

16T use an initial “system” prompt to assign the LLM a clear role in identifying whether a task can be
automated or not. The system prompt follows Eisfeldt et al. (2023) with some changes that takes into

account the advancements in the LLMs since then.
17T experimented with OpenAl GPT-5, GPT-5 mini, GPT-5 nano, Google Gemini 2.5 Pro, 2.5 Flash,

2.5 Flash Lite and Claude Sonnet 4.0. Based on the input/output tokens generated for roughly 20,000
tasks, state of the art models (GPT-5, Gemini 2.5 Pro and Sonnet 4.0 are very slow and expensive to
work with. Among the more speed and budget oriented model, I find that 2.5 Flash returns much more

reasonable answers based on the reasoning output.
8Exact prompt given to Gemini 2.5 Flash model can be seen in Appendix Section D.
9For the list of occupations and the corresponding occupation groups, please see Table A3.
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Figure 1: Comparative Advantage Across Occupation Groups
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3 workers seem to be all-rounders whereas type 4 workers have a negative comparative
advantage in all occupation groups other than Services & Safety, Health, Education &

Culture and Production, Manufacturing & Construction (PMC) occupation groups.

When a worker type has a distinct comparative advantage in an occupation, they would

populate the occupation, increase the competition for other worker types and drive them
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Figure 3: Distribution of Types Across Occupations
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Education & Culture, Production, Manufacturing & Construction and Services & Safety,

and they would face much less competition in these groups.

229 indicates that there is sorting of working types into occupations with respect

Figure
to their comparative advantage. Half of the STEM population is type 4 workers, and they
also make up on average more than 30 percent of the worker population in Business, Law &
Administrative and Commerce & Logistics occupation groups. On the other hand, type 2
and type 3 workers do not exhibit a strong sorting pattern given their uniform comparative

advantage.

5.1 Post-Al Equilibrium

In this section I present the post-Al equilibrum. To draw a reasonable comparison between
the pre and post-Al equilibria, I also calculate the pre-Al equilibrium to get rid of any other
important shock that might have occurred during the estimation period. I start from the
average of the last three years’ estimated occupational prices in both cases, and only adjust
M, parameter that accounts for the Al automation shock. I numerically solve for the post-

AT equilibrium, starting from the original equilibrium prices. The exact algorithm for the

20This figure does not account for the fact that worker types do not have equal masses. Figure 3 shows

the same distribution of each worker type normalized for each type.
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numerical solution is described in Algorithm B2.

Since Al is introduced as a positive productivity shock, wages increase overall. However,
looking at the relative wages, there are winners and losers. Type 1 workers, who specializes
in technical occupations, and type 4 workers, who specializes in services type occupations
seem to do worse than the other types who are all-rounders (Figure 1). This indicates that
the reallocation ability is significant in terms of reaping the benefits of a sizable fluctuation

in prices (see Figure 1).

Figure 1: Relative Log-Wages Across Types
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Notes: y-axis indicate the average wage for worker types minus the unweighted
average wage over all worker types. The picture with the average weighted by
the type shares still look similar since type 1 and type 4 workers have 45% share

in the economy:.

Figure 2 shows there is a strong positive correlation between the occupational price changes
and the share of automated tasks in the post-Al equilibrium?!. Since the AI shock boosts
productivity of the workers, production increases in those occupations thus yielding lower
prices. Occupational outputs are substitutes and this prevents prices from falling down
too much. Hence, higher wages due to the productivity effect dominates and relatively few

workers move from the highly exposed occupations.

Figure 3 displays the worker allocation across the occupation groups for both equilibria.
The biggest reallocation is from Manufacturing & Construction occupations to Business

& Law and Administration occupations, and the majority of this particular worker flow

21'While the average price in the post-Al equilibrium seems to be higher, price of the optimal consump-

tion basket are still the same in both equilibria.
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Figure 2: Changes in Occupation Prices vs. Non-Automated Task Shares
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Notes: Left y-axis is for the occupational price differences between the post-

AT equilibrium and the original equilibrium. Right y-axis is for the inverse

automated task shares.

comes from Type 1 workers. Business & Law and Administration occupations are the most
exposed to Al, whereas Manufacturing & Construction occupations are the least exposed.
However, worker types other than type 1 have negative comparative advantage in Business
& Law and Administration occupation group, and the productivity increase in this occu-
pation group is not large enough to offset the negative comparative advantage. Hence, it is
type 1 workers having the most positive comparative advantage in this group is why there
is a massive flow of type 1 workers to Business & Law and Administration occupations.
However, type 1 workers do not to gain significant benefits from this switch, or particularly

any other switch, as they have 0 comparative advantage in any occupation.

6 Conclusion

As AT technology is getting integrated into work, the future of the labor market remains a
question. In order to help with this question, many predictions regarding the occupational
exposure to Al exists. These predictions provide only half of the picture, as they do not
take worker reallocation into account. Therefore, existing occupational exposure scores are
hard to interpret. In this study, I build a framework where production can be performed
by human workers or Al automation technology. To study the reallocation, I estimate a
model of occupation choice with heterogeneous workers differing in comparative advantage

across occupations.
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Figure 3: Worker Allocation Across the Occupation Groups
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I estimate 4 worker types, where two of them turn out to be specialists, i.e. they have
distinct comparative advantages across the occupation groups, and the other two of them
are generalists, i.e. they have uniform comparative advantage across the occupation groups.
I find that the comparative advantage and the share of types across occupations exhibit a

positive correlation, suggesting a sorting with respect to comparative advantage.

Using the automation scores I generate following Eloundou et al. (2023), I simulate an Al
shock. Then I numerically solve for the new equilibrium starting from the prices distorted

by the AI shock. I compare the original equilibrium and the post-Al equilibrium.

First, given that AI shocks are very uneven occupation groups, for many workers it is
optimal to switch to another occupation, unless they would lose on the comparative ad-
vantage front. This is usually the case for the specialists, who sort into the occupations
where they have a strong comparative advantage, and they would benefit less from moving
to another occupation. Generalists, on the other hand, do not lose much welfare upon
moving since in terms of comparative advantage they do not incur a cost as large as that

of specialists.

It is very likely that there will be both losers and winners due to AI technology, and
reallocation is a significant aspect to be able to assess the changes in the welfare. I show
that occupation of the worker is not the only variable that determines whether they will be
a loser or a winner. Unobserved comparative advantages and the ability to move into the

other occupations can put the worker ahead of the others. Understanding these mechanisms



fully, and to assess people’s ability to move should be a strong policy concern while Al is

getting more widespread.
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Additional Tables & Figures

Table Al: Wage Equation Estimates by Worker Type

All Types Typel Type2 Type3d Type4d

Age 0.0419
(0.0001)
Age? -0.0004
(0.0000)
Schooling < Secondary  -0.1822
(0.0002)
1t PC 0 -0.0499  -0.2102  -0.1739
(0.0003) (0.0003) (0.0004)
2nd pC 0 -0.1046  -0.0713  0.0269
(0.0003) (0.0003) (0.0004)
34 PC 0 0.1575  0.5647  0.3885
(0.0004) (0.0004) (0.0005)
4% PC 0 0.1794  0.3952  -0.0704
(0.0008) (0.0008) (0.0010)
5t PC 0 -0.3357  -0.6689  -1.2483
(0.0008) (0.0008) (0.0012)
6 PC 0 0.8912  0.6521 1.5685
(0.0009) (0.0009) (0.0011)
7 PC 0 -0.9100  -0.0996  -1.8305
(0.0012) (0.0014) (0.0017)
8th PC 0 -0.1419  -1.3706  -0.3703

(0.0011) (0.0012) (0.0015)

Notes: Occupation-year fixed effects are provided in Table ??. Standard errors are

reported in parentheses. The “All Types” column shows coefficients common to all
worker types. Principal components (PC) are type-specific transformations of occu-
pation characteristics. Type 1 coefficients for principal components are normalized to

zero. All coefficients are statistically significant at the 1% level.
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Table A2: Exposure Scores by Occupation

Occupation Score Occupation Score
Advertising, marketing, and media design 0.63  Tourism, hotels, and restaurants 0.34
Financial services, accounting, and tax 0.61 Non-medical healthcare and body care 0.34
Computer science and ICT 0.59  Metal production and construction 0.33
Business management and organization 0.59 Raw materials, glass, and ceramic processing 0.31
Humanities, social sciences, and economics 0.56  Medical and health care 0.31
Purchasing, sales, and trading 0.54  Technical building services 0.31
Law and public administration 0.49 Teaching and training 0.30
Construction planning and surveying 0.49  Cleaning services 0.29
Technical R&D, construction, and production 0.44  Mechatronics and electrical engineering 0.27
Safety, security, and surveillance 0.42  Plastic, wood, and wood processing 0.26
Math, biology, chemistry, and physics 0.42  Gardening and floristry 0.25
Traffic and logistics 0.41  Machine-building and automotive technology 0.23
Retail sales 0.40  Education, social work, and theology 0.21
Agriculture, forestry, and farming 0.36  Food production and processing 0.21
Paper, printing, and technical media design 0.35  Vehicle and transport equipment operation 0.21

Scores indicate the share of tasks within the occupation that are predicted to be automatable.
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Table A3: Occupation Groups

Occupation

Group

Business management and organization
Financial services, accounting, and tax
Law and public administration

Traffic and logistics

Vehicle and transport equipment operation
Purchasing, sales, and trading

Retail sales

Medical and health care

Non-medical healthcare and body care
Education, social work, and theology
Teaching and training

Humanities, social sciences, and economics
Advertising, marketing, and media design

Product design, craftwork, and fine arts

Business, Law & Admin.
Business, Law & Admin.
Business, Law & Admin.
Commerce & Logistics

Commerce & Logistics

Commerce & Logistics

Commerce & Logistics

Health, Educ & Culture
Health, Educ & Culture
Health, Educ & Culture
Health, Educ & Culture
Health, Educ & Culture
Health, Educ & Culture
Health, Educ & Culture

Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction
Prod, Manuf. & Construction

Raw materials, glass, and ceramic processing
Plastic, wood, and wood processing

Paper, printing, and technical media design
Metal production and construction
Machine-building and automotive technology
Textile and leather production

Food production and processing

Building construction

Interior construction

Technical building services

Agriculture, forestry, and farming

Gardening and floristry

Safety, security, and surveillance

Cleaning services

Tourism, hotels, and restaurants
Mechatronics and electrical engineering
Technical R&D, construction, and production
Construction planning and surveying

Math, biology, chemistry, and physics

Computer science and ICT

Prod, Manuf. & Construction

Service & Safety
Service & Safety
Service & Safety
Service & Safety
Service & Safety
STEM
STEM
STEM
STEM
STEM
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Table A4: Switching Cost / Average Wage by Occupation

Occupation Sn(:lo)/w  Occupation Sn(-|o)/w
Agriculture, forestry, and farming 0.163  Traffic and logistics 0.524
Gardening and floristry 0.208  Vehicle and transport equipment operation 0.422
Raw materials, glass, and ceramic processing 0.178  Safety, security, and surveillance 0.352
Plastic, wood, and wood processing 0.380  Cleaning services 0.388
Paper, printing, and technical media design 0.264  Purchasing, sales, and trading 0.504
Metal production and construction 0.631  Retail sales 0.471
Machine-building and automotive technology 0.697  Tourism, hotels, and restaurants 0.334
Mechatronics and electrical engineering 0.506  Business management and organization 1.012
Technical R&D, construction, and production 0.559  Financial services, accounting, and tax 0.910
Textile and leather production 0.163  Vehicle and transport equipment operation 0.537
Food production and processing 0.408 Medical and health care 0.612
Construction planning and surveying 0.355  Non-medical healthcare and body care 0.297
Building construction 0.367 Education, social work, and theology 0.348
Interior construction 0.268  Teaching and training 0.262
Technical building services 0.436  Humanities, social sciences, and economics 0.262
Math, biology, chemistry, and physics 0.400  Advertising, marketing, and media design 0.480
Computer science and ICT 0.902  Product design, craftwork, and fine arts 0.169

Figure Al: Relative Prices Across Occupation Groups
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B Estimation Appendix

B.1 EM Algorithm

The section follows Section 3 to provide more details on the estimation procedure.

The EM algorithm is started by initiating a type distribution. To do that, I partition the
occupations in 4 groups (the same as A3), and initiate probabilities based on the share of
histories spent on each occupation groups. For example, a worker who spent all of their
career in a single occupation group would be assigned an initial probability of 0.7 to the
type initially associated with that group. During the estimation, types can be disassociated
with the occupation groups or may become associated with some other occupations. The
idea behind the initiation is to create enough diversity between types so that the wage and
transition parameters generated by the maximization step can be diverse enough. Then,
during the expectation stage, the probabilities calculated are not very uniform and the

algorithm would slowly converge from that point.

Following the initiation of the type distributions, the algorithm for the EM estimation is
provided in Algorithm B1.

[ use A = le — 2 for the L2-regularization. After the log-likelihood converges, I re-estimate
the parameters for the transition probabilities, this time with no penalty (A = 0).
B = arg min || g (ILd(o']o) — X,Bi’”) Ik (B6)
Bz,?‘r

Then estimate the predicted transition probabilities for the second stage.

X i,l7r,>k
#(0/)o) = —PXBT) (B7)
1+ 3, exp(X3;™))
Expected wage differentials can also be recovered from the wage regression.
Eﬂ[]no’t - IEtu;no’t = Xntﬁj{gi - Xnt/B;{:)U (B8)

Given Eq. B7 and Eq. B8 and the distance measure between the occupations, I have all
the variables for the second stage regression. Hence, I calculate the parameters for the
scale parameter (7) for the switching cost shocks and the distance-cost multiplier («;) as

0 ).

well as the fixed cost for switching from each occupation ({a2}9_,

B.2 Log-Likelihood

Figure B1 provides the log-likelihood history for the estimation. I stop the EM algorithm

when the improvement in the log-likelihood get smaller than le — 6.
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Algorithm B1 Expectation-Maximization (EM) Algorithm for the First Stage

1: Initialize type probabilities qsy for all n, .
2: while the total log-likelihood has not converged do
Mazimization Step
3: Estimate transition parameters B8°™* for each type i via weighted L2-regularized

(ridge) regression:

B = argmin [|q” (1d(d'|o) — XB"™) |* + A|[B""| /2 (B1)
ﬁl,w

4: Estimate wage parameters B“"* for each type i via weighted OLS:

B = arg min lgy” (w — XB™) | (B2)
Bz,w
5: Estimate type probability regression parameters B“%* via weighted multinomial
logit:
B = argmin||¢{]” (1 - X;8) | (B3)
B
Expectation Step
6: Calculate individual likelihoods L,; using the new parameters (B-™*, B ).

7: Generate predicted type probabilities:

q(m+1) (Z"wobs) _ Xlﬁi’q’* (B4)

nl

8: Update worker-specific type probabilities using Bayes’ rule:

ni Zi/ Ln|i/q(m+l) (Z'/|w70£s)

9: end while
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It converges monotonically except right after the initial type probabilities are updated. This
happens because the transition probability logistic regressions may not be converging with
the initial type distributions. This may be either due to (i) the initial type distributions
over leveraging a few observations with very distinct observables compared to the average
characteristics of the workers doing this transition. This may also be driven by the logistic
regressions not converging due to the other numerical instabilities, such as those related
to very small type probabilities, which can always cause non-monotonic behavior in the
likelihood. However, since the likelihood behavior is monotonic everywhere except the very
initial phase, it is likely due to the initial probabilities being far off from the probabilities

that would maximize the likelihood.

Figure B1: Log-Likelihood for the First Stage
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Note: At 40" iteration, the improvement in the log-likelihood is less than
le — 6.

B.3 Derivation of the Regression for the Second Stage

I start with the derivation of Eq. 12. To do that, first write down the relationship between
the time ¢ + 1 unconditional value function and the time ¢ 4+ 1 value function conditional

on an occupation choice.

1
EtVt+1(0/7 Pig1, Ht+1,wnt+1) = 7/10?}263(13 (§Ut+1(0”, hita, Ht+1,wnt+1,§)) dF(f) + ¢
f 7/

o

(BY)
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Due to the logit property induced by the Type 1 switching cost shocks, the probability of

staying at o at time t + 1 is as follows.

€xp (Ut+1(0/7 Pig1, Hivr, Wiitt, f)/ﬂ
o €XP (V41 (0", Py, Hygr, wney1,€) /)

Tt (0/’0/7 Pyt Ht+1,wnt+1) = Z (Bl())

Taking the log of this probability, I get

"Ut+1(0/, ht+1, Hypq, Wi, f)
Y

1
— log Z exp (;%H(OH, hiy1, Hepr, e, f)) (B11)

/!

/ /
log 741 (0 |0 s s Ht—l—luwnt—i—l) =

o

Substituting this into Eq. B9 yields the following expression.

Etv;tJrl(O/aht+17Ht+1awnt+1) :/<Ut+1(olyht+1aHt+1ywnt+17§>
i3

-7 log T41 (Ol|0,, ht—l—l; Ht—l—l; wnt+1) )dF(é-) + /}/Ce (B12>

Since the terms inside the integral are conditional over future shock &, the integral is

equivalent to the time ¢ expectation.
EVir1 (0, hevr, Herywnen) = By (v (0, by, Hepr, Wi, €)
—ylog w1 (010", hug1, Hyr, wngs1) | + e (B13)
Combining above equation with Eq. 11, I get to the following equality.
Ut(ola ht; Ht; Wnt) = Wno't + Sn(ol‘07 wnt) + go’ont
+ ﬁUtH(O”, Pir, Hypr, wnig1) — Bylog mig (0/’0/, P, Hepr, Wniy)

+ By (B14)

Now suppose this worker stays at 0" at time t+1. The value function can be written in terms
of flow utility for two periods, transition probability and the continuation value.
Ut(0/7 hta Hta wnt) = ]Etwno’t + Sn(0/|07 wnt) + go’ant
+ BE; [wno't+1 — vlog 7Tt+1(0/|0/7 hiv1, Heya, wm+1)]

+ 52Etv¥+2(0/, higo, Hypo, Wnt+2) + Byce (315)

Writing down the same equality for a worker with the same individual states who stays in

occupation o at time ¢ and moves onto occupation o’ at time ¢ + 2

Ut(O, hy, Hy, Wnt) = Eywpor
+ BE; [Wnort1 + $n(0']0, wntt1) + Evont+1 + Y 10g mep1 (00, heyr, Her, Wigs1)]

+ BPEViia(0', hiva, Hiyo,Wnisa) + Byct (B16)
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Becauase Type 1 switching cost shocks induces logit probabilities, the value function differ-
ential between the two workers starting from the same occupation (before the occupation
choices made in time t) can be related to the time ¢ transition probabilities.

Ut(O/, hta Hta wnt) - Ut<07 hta Hta wnt) _ 10 <7rt(0/’07 ht> Ht> wnt))

B17
Y 7 (0lo, hy, Hy, wyy) (B17)

Subtracting Eq. from

(’/Tt(Ollo, ht7 Hta wnt)
~lo
7Tt(0|0> htawant)

) - Et [wno’t - wnot] + [Sn(0,|0a wnt) - 5Sn(0/|07 wnt-i—l)]

7Tt+1(0/’0/7 Pig1, Hiq, wnt+1)
7Tt+1(0/|0? Pigr, Hipa, Wnt+1)

- 7B log ( ) + go’ont - go’ont—i—l

(B18)

Under the assumption that s, (-) does not depend on any time variant worker characteristics
such as age, this equation can be further simplified

7 lo (Trt(Ol|07 hta Hta Wnt)

7.‘—15(0’07 ht7 Ht7 wnt)

) = Et [wno’t - wnot] + (1 - 6)5n<0/|07 wnt)

7Tt+1(0'|0', ht+1, Hy iy, wnt+1)
Te1(0'0, hisr,y Hegr, Wnet1)

- 'Yﬁ log < ) + go’ont - fo’ont—l—l

(B19)
Combine the probability terms to the left hand side and divide both sides by v to get

lo (Wt(olyoahtaHtawnt))+/610g (Wt+1(0//|0'aht+1,Ht+1,wnt+1)>
7Tt(0|0’ hth’wnt) 7Tt+1<0 ‘Oa htJrla Ht+17wnt+l)

1 1-—
= ;Et [wno/t - wnot] + 5

1
3n<0/’07 wnt) + ; [go’ont - fo’ont+1]
(B20)

From the first stage, transition probabilities and expected wage differentials are calculated.

I estimate this equation via OLS where the discount factor g = 0.96.

B.4 Construction of the Post-AI Equilibrium

First, I calculate the preference shifters (u,) by using the expenditure shares. Starting

from Equation 5, I can single out the consumption preference shifters as follows.
}/ot Pot P
= — B21
=3 () (B21)

Multiplying and dividing the right hand side by (P;/P,;)?~!, the consumption preference

shifters can be expressed in terms of expenditure shares, individual occupation prices and

the aggregate price level.

Yot Pot 51-p pp-1
o= pl-rpr B22
/"L }/; Pt ot t ( )
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There is no, to my knowledge, a direct source for occupational prices. Hence, I recover
occupation prices and quantities from the stage estimations and from there, I can calculate
every term on the RHS except the aggregate price level. However, p, are independent of
P, and. Hence, I calculate p, x Ptl_p and normalize the sum of u, to 1. For the elasticity
of occupational outputs substitution (p), I set it to 1.78 following Burstein, Morales, and
Vogel (2019)?2. T calculate two steady states, one with no Al automation and one with
Al automation. While the data is assumed to represent the steady state with no Al
automation, I am calculating the no-switching cost shocks steady state (switching costs
are still in place while there are no additional switching cost shocks). Therefore, to make
a plausible comparison between the two steady states, I also calculate the steady state for

the equilibrium with no Al technologies as well.

The iterative algorithm to find the steady state is captured in Algorithm B2. The success
of this algorithm especially relies on preventing a large number of workers from switching
simultaneously. When this happens, prices change significantly, and in the next iteration
workers who just switched find it more profitable to switch to their previous occupation. By
restricting the switches, specifically to a randomly selected 1% of the potential switchers,
the fluctuations in the occupational prices get to a manageable level where the counter-
factual wages across occupations gradually equalize until no worker finds it profitable to
switch. Furthermore, updating the prices gradually also help, although it is by itself unable

to prevent prices to jump back and forth.

Based on some trial runs, I observe that it would take either an extremely long time or
impossible to get to an equilibrium where not even a single worker would want to switch.
A few workers switching can fluctuate the prices just enough to make some others finding
it more profitable to move back where the switching costs are low enough, which puts the
algorithm into an endless loop. Therefore, I find it reasonable to stop the algorithm when
there are only 100 workers who find occupation switching profitable. At this point, true
and effective price vectors are virtually identical and running the algorithm further would

not give me any additional precision.

C Data Appendix

C.1 Data Preparation

The raw data contains more than 77 million observations after episode splitting and more

than 55 million observations before episode splitting. Data providers perform episode split-

22 Authors of the study estimate this parameter with 30 occupations, using the US data.

38



Algorithm B2 Equilibrium Solver for Occupational Prices and Worker Allocation

1: Initialization:

2: Calculate aggregate price level Pég; and aggregate output Y(© from initial worker
allocation.

3: Calculate initial occupation outputs Y9 for all o.

4: Calculate initial true occupational prices:

1
O\ »
© _ Y
Po,true = Ho (Y(0)>

5: Set effective prices PO Po(g)me.

6: Set iteration k < 0, num_switchers < oo.

7. Iteration:

8: while num_switchers > 100 and max, log(Po(k)) - log(Po(fzg,ue) > 0.005 do

9: k+—Fk+1

10: For each worker n in occupation o(k_l), find the optimal new occupation o/ :

_ 1
0, = argmax {Po(,k l)zm(n)o/]\/[ol 1 ﬁsn(o'logffl), z)}

11: Identify set of potential switchers S < {n | o} # ogﬂ_l)}.

12: num_switchers < |S].
13: Select a random subset S' C S of size |n**%" x num_switchers].
14: Update worker allocation: 0% < o, forn € S, and o)« of ™ for n ¢ 5.
15: Calculate new individual outputs Y. * and aggregate output Y *¥) from new alloca-
tion o;k).
16: Update true occupational prices:
1
R =ik (Vi)
: Y (k)

17: Update effective occupational prices (with damping):

P® - APPFD 4 (1 - A7) P

o,true

18: end while
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ting whenever two episodes overlap. In such cases, they generate two extra episodes for the
overlapping period. For example, consider an episode with start and end dates 01/01,/2001
and 12/31/2001. Consider another episode with start and end dates 09/01/2001 and
09/01/2002. Data providers create two additional episodes with start and end dates
09/01/2001 and 12/31/2001, where the information is transferred from the two overlap-
ping episodes, therefore, ending up with 4 episodes instead of the original 2. These episode
splitting artificially boost the transition probabilities from and to the same occupation,
leading biased estimates for the first stage. To eliminate these generated episodes, I only

keep the observations if they contain the mid-year between their start and end dates.

I first keep the observations that belong to two sources, Employee History (BeH) and Ben-
efit Recipient History (LeH). Benefit Recipient History keeps track of people who receive
unemployment benefit or unemployment assistance. Employee History data has the infor-
mation on people with an active employment and it is the one that the most estimation
parameters rely on, other than the transition probabilities. Since I am not taking into ac-
count the unemployment in the post-Al equilibrium, unemployment histories do not alter

the post-Al worker allocation.

There are some other data sources that I drop from the data. Unemployment Benefit
IT Recipient History (LHG) starts from 2005, being much later than the 1998 thresh-
old, I drop this data source. Similarly, I also drop Participants-In-Measures History Files
(MTH/XMTH) due to starting from 2000 for MTH and 2005 for XMTH. Jobseeker His-
tories (ASU/XASU). The last data source, Jobseeker Histories (ASU/XASU) starts from
1997 for ASU and from 2005 for XASU. With this data source, however, there are many
episode splittings (split episodes cover half of the observations) and I drop this data source

from the estimation altogether.

There are also some missing episodes for some workers. This prevents transition probabili-
ties from being correctly estimated. Whenever there are such cases, I keep the observations
with the longest no-gap history. If there are at least 2 set of observations with equal length,
then I keep the most recent one as estimation of the more recent periods would be more

important in terms of making predictions about the future.

I also drop one occupation based on the criterion that it spans less than 1/1000th of all the
observations. I merge two occupations with a low count of observations and related titles
“Occupations in product design, artisan craftwork, fine arts and the making of musical

instruments” and “Occupations in the performing arts and entertainment”.
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C.2 Principal Components

Each O*NET SOC occupation is associated with some metrics, classified under “Knowl-
edge”, “Skills”, “Abilities” and “Work Activities”. There are 160 attributes in total. Some
attributes are very similar, and same attributes such as “Mathematics” is a part of both
“Skills” and “Abilities” metrics. Hence, I use the principal components to reduce the very
high dimension of attributes. Table C1 shows the most significant loadings for the first
8 principal components. Figure C1 shows the where the occupations stand in the first 2

principal components space.

Table C1: Most Positive and Negative Loadings for the Principal Components

Principal Component 1

Most Negative Most Positive
Task Loading  Task Loading
Manual Dexterity -0.102  Written Expression 0.114
Extent Flexibility -0.101  Written Comprehension 0.114
Handling and Moving Objects -0.100  Writing 0.114
Static Strength -0.099 Reading Comprehension 0.114
Dynamic Strength -0.099  Active Learning 0.114

Principal Component 2

Most Negative Most Positive
Task Loading  Task Loading
Working with the Public -0.068  Quality Control Analysis 0.148
Customer and Personal Service -0.053  Mechanical 0.148
Fine Arts -0.052 Inspecting Equipment, Material 0.149
Service Orientation -0.052  Operation Monitoring 0.150
Establishing Interpersonal Relat. -0.042  Physics 0.153

Principal Component 3

Most Negative Most Positive
Task Loading  Task Loading
Programming -0.142  Working with the Public 0.154
Interacting With Computers -0.130  Resolving Conflicts and Negotiating 0.155
Computers and Electronics -0.126  Psychology 0.169
Near Vision -0.110  Assisting and Caring for Others 0.180
Engineering and Technology -0.102  Therapy and Counseling 0.196

Principal Component 4

Most Negative Most Positive
Task Loading  Task Loading
Sales and Marketing -0.240 Biology 0.139
Management of Material Resources -0.196  Assisting and Caring for Others 0.151
Management of Financial Resources -0.195  Identifying Objects, Actions, and Events 0.158

Continued on next page
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Table C1 — continued from previous page

Most Negative

Most Positive

Task Loading  Task Loading
Production and Processing -0.178  Medicine and Dentistry 0.170
Selling or Influencing Others -0.178  Documenting/Recording Information 0.242
Principal Component 5
Most Negative Most Positive
Task Loading  Task Loading
Fine Arts -0.329  Economics and Accounting 0.113
History and Archeology -0.276  Processing Information 0.113
Thinking Creatively -0.228  Performing Administrative Activities 0.125
Philosophy and Theology -0.209  Number Facility 0.132
Sociology and Anthropology -0.185  Determine Compliance 0.173
Principal Component 6
Most Negative Most Positive
Task Loading  Task Loading
Geography -0.321  Monitor Processes, Materials 0.113
Transportation -0.302 Finger Dexterity 0.116
Telecommunications -0.238  Arm-Hand Steadiness 0.118
Law and Government -0.205  Instructing 0.120
Spatial Orientation -0.198  Training and Teaching Others 0.144
Principal Component 7
Most Negative Most Positive
Task Loading  Task Loading
Food Production -0.218 Time Sharing 0.185
Biology -0.162  Finger Dexterity 0.190
Estimating the Characteristics of Info. -0.131  Telecommunications 0.234
Dynamic Flexibility -0.114  Clerical 0.238
Geography -0.100 Customer and Personal Service 0.259
Principal Component 8
Most Negative Most Positive
Task Loading  Task Loading
Chemistry -0.243  Peripheral Vision 0.117
Biology -0.241  Speech Clarity 0.118
Economics and Accounting -0.240  Installation 0.141
Customer and Personal Service -0.219  Sound Localization 0.148
Sales and Marketing -0.190  Selective Attention 0.152

Note: I use the first 8 principal components in the estimation of the comparative advantage parameters,

which explain more than 80 percent of the total variance in the entire space.
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Figure C1: Occupations in the first Two Principal Components Dimension
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Note: z-axis is for the first principal component and y-axis is for the second
principal component. The principal components are scaled with the variance
of the first principal component, ensuring that all occupations would be in the

interior of the unit circle.

C.3 Crosswalks

There are no direct crosswalks between O*NET SOC-2010 classification and KldB-2010
classification. To match the occupations, I first generate a crosswalk from SOC 2010 to

ISCO-08, then to KIdB-2010 classification.

I generate two crosswalks for two cases, (i) automation scores and (ii) principal components.

The idea behind both are the same and as follows.

First, the crosswalk between SOC-2010 and ISCO-08 matches 6-digit SOC-2010 occupa-
tions to 4 digit ISCO-08 occupations. I use the automation scores for the tasks associated

with 6-digit SOC-2010, if the O*NET task statements are available for that 6-digit occu-
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pation. If not, I look at the children occupation in the SOC-2010 classification, and get to
the parent task statements by combining them. If the 6-digit’s children do not exist in the
O*NET task statements, I combine the task statements of the siblings, and use them as if

they are the task statements that belong to the 6-digit occupation.

With regards to the principal components, the procedure is exactly the same, with the
only difference being that instead of combining the task statements, I take simple averages
of the principal components. The simple average could be of the children occupations if
they have attributes listed in the O*NET database, or of the siblings if not.

There are 34 (excluding army occupations and the 2 eliminated occupations due to the
low observation count) occupations in the 2-digit KIdB-2010 classification, and there are
around 1000 6-digit occupations in the SOC-2010 classification. Using the information
on the children or siblings in the occupation hierarchy is an exemption, and there are
on average more than 20 6-digit SOC-2010 occupation for each KldB-2010 occupation,
which should make any bias due to missing information on 6-digit SOC-2010 occupation

negligible.

D LLM Prompt

Following is the initial prompt given to Gemini 2.5 Flash model.

Consider the most powerful Google Gemini large language model (LLM). This model can
complete many tasks that can be formulated as having text/audio/video input and text/audio/video
output. This model have access to up-to-date facts from internet or any information or

database that is relevant for the task.

You are a helpful assistant who wants to label the given tasks according to the rubric below.
Equivalent quality means someone reviewing the work would not be able to tell whether a
human completed it on their own or with assistance from the LLM. If you aren’t sure how
to judge the amount of time a task takes, consider whether the tools described exposed the

magority of subtasks associated with the task.
Ezxposure rubric:

E1 - Direct exposure: Label tasks E1 if direct access to the LLM through an interface alone
can reduce the time it takes to complete the task with equivalent quality by at least half. This
includes tasks that can be reduced to: - Writing and transforming text and code according
to complex instructions, - Providing edits to existing text or code following specifications,

- Writing code that can help perform a task that used to be done by hand, - Translating
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text between languages, - Summarizing documents, - Providing feedback on documents, -
Answering questions about a document, - Generating questions a user might want to ask
about a document, - Writing questions for an interview or assessment, - Prepare training
materials based on general knowledge, - Inform anyone of any information via written or

spoken media.

EO0 - No exposure: Label tasks FEO if none of the above clearly decrease the time it takes
for an experienced worker to complete the task with high quality by at least half. Some
examples: - If a task requires a high degree of human interaction (for example, in-person
demonstrations) then it should be classified as EOQ. - If a task requires precise measurements
then it should be classified as FO. - If a task requires any use of a hand or walking then
it should be classified as E0. - LLM cannot make any decisions that might impact human
livelihood (e.g. hiring, grading, etc.). If any part of the task involves collecting inputs
to make a final decision (as opposed to analyzing data to inform a decision or make a
recommendation) then it should be classified as EO. The LLM can make recommendations.
The LLM cannot do anything that legally requires a human to perform the task. - If there
s existing technology not powered by an LLM that is commonly used and can complete
the task then you should mark the task EO if using an LLM or LLM-powered tool will not
further reduce the time to complete the task. When in doubt, you should default to E0.

Read the following tasks that belong to an occupation. Then do the following: 1. Reason
very briefly step by step to decide which of the labels (EO or E1) from the exposure rubric
you were given applies to the task’s exposure to LLM. Report. 2. Give an explanation for
which label applies and report the label that you think fits best. Report only the label that
you determined for the task. 3: 3. Given the amount of speculation required in step 1,

describe your certainty about the estimate — either high, moderate, or low.

Direct or coordinate an organization’s financial or budget activities to fund operations,

maximize investments, or increase efficiency.

LLM Response: The task ’Direct or coordinate an organization’s financial or budget activ-
ities to fund operations, mazximize investments, or increase efficiency’ involves high-level
strategic decision-making, leadership, and ultimate responsibility for financial outcomes.
These decisions directly impact the organization’s stability, employee livelithoods, and over-
all business operations. The rubric explicitly states: 'LLM cannot make any decisions that
might impact human livelihood (e.g. hiring, grading, etc.). If any part of the task involves
collecting inputs to make a final decision (as opposed to analyzing data to inform a deci-
sion or make a recommendation) then it should be classified as E0.” While an LLM can

analyze financial data, generate reports, draft proposals, or make recommendations (which
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are E1 activities), it cannot “direct or coordinate’ by making the final, responsible decisions
or taking on the leadership role required for such a task. Furthermore, this task requires a
high degree of human interaction, negotiation, and strategic judgment that an LLM cannot
replicate with equivalent quality. Therefore, the core of the task is not exposed to LLM
capabilities in a way that would reduce completion time by half with equivalent quality. FEO
High

I use the “chat” feature in the API, which allows me to respond to every output by the
next task description. This allows me to save fees and time by not having to input the

initial prompt every time.
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